Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Gene ; 884: 147742, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37634882

ABSTRACT

BACKGROUND: Schistosomiasis is a neglected tropical disease caused by Schistosoma and affects over 240 million people worldwide. One of the most prominent causative agents is Schistosoma mansoni, which develops inside the intermediate host. Biomphalaria tenagophila is the second most important vector of schistosomiasis in Brazil and the Taim population is completely resistant to infection by S. mansoni. OBJECTIVE: This study aims to identify and characterize B. tenagophila microRNAs (miRNAs) and evaluate their differential expression in S. mansoni-susceptible and -resistant populations of B. tenagophila. METHODS: Two populations of B. tenagophila snails, susceptible and resistant to S. mansoni infection, were used to investigate the small RNA response of these snails after being infected with the parasite. Small RNA sequencing and quantitative real-time PCR were employed to identify and validate differentially expressed miRNAs. Bioinformatics analysis were performed to identify miRNA precursors and mature and evaluate their differential expression. FINDINGS: The study predicted 173 mature miRNAs and 123 precursors. Among them were six Lophotrochozoa-specific miRNAs, three mollusk-specific miRNAs, and six pre-miRNAs in a cluster. The small RNA sequencing and RT-PCR of B. tenagophila samples allowed assessing the expression patterns of miRNAs. MAIN CONCLUSIONS: The results obtained may support future studies in Biomphalaria spp., generating a global impact on disease control.


Subject(s)
Biomphalaria , MicroRNAs , Humans , Animals , Biomphalaria/genetics , MicroRNAs/genetics , Schistosoma mansoni/genetics , Brazil , Computational Biology
2.
PLoS One ; 18(3): e0282490, 2023.
Article in English | MEDLINE | ID: mdl-36867641

ABSTRACT

BACKGROUND: Rhodnius prolixus is a vector of Chagas disease and has become a model organism to study physiology, behavior, and pathogen interaction. The publication of its genome allowed initiating a process of comparative characterization of the gene expression profiles of diverse organs exposed to varying conditions. Brain processes control the expression of behavior and, as such, mediate immediate adjustment to a changing environment, allowing organisms to maximize their chances to survive and reproduce. The expression of fundamental behavioral processes like feeding requires fine control in triatomines because they obtain their blood meals from potential predators. Therefore, the characterization of gene expression profiles of key components modulating behavior in brain processes, like those of neuropeptide precursors and their receptors, seems fundamental. Here we study global gene expression profiles in the brain of starved R. prolixus fifth instar nymphs by means of RNA sequencing (RNA-Seq). RESULTS: The expression of neuromodulatory genes such as those of precursors of neuropeptides, neurohormones, and their receptors; as well as the enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines were fully characterized. Other important gene targets such as neurotransmitter receptors, nuclear receptors, clock genes, sensory receptors, and takeouts genes were identified and their gene expression analyzed. CONCLUSION: We propose that the set of neuromodulatory-related genes highly expressed in the brain of starved R. prolixus nymphs deserves functional characterization to allow the subsequent development of tools targeting them for bug control. As the brain is a complex structure that presents functionally specialized areas, future studies should focus on characterizing gene expression profiles in target areas, e.g. mushroom bodies, to complement our current knowledge.


Subject(s)
Chagas Disease , Rhodnius , Animals , Brain , Knowledge , Nymph , Gene Expression
3.
PeerJ ; 11: e14992, 2023.
Article in English | MEDLINE | ID: mdl-36935931

ABSTRACT

Background: Estuaries are transitional coastal ecosystems that are threatened by multiple sources of human pollution. In 2015, mining tailings from an upstream dam failure caused massive metal contamination that impacted benthic assemblages on the Brazilian Rio Doce estuary. Methods: In this study, we investigate and compare meiofaunal assemblages with eDNA metabarcoding 1.7 years (2017) and 2.8 years (2018) after the initial contamination by mine tailings in order to evaluate the continued impact of sediment mine tailing contaminants on the structure of benthic assemblages after the disaster. Results: The community was dominated by Arthropoda and Nematoda 1.7 yr after the impacts (42 and 29% of meiofaunal sequence reads, respectively) but after 2.8 years Arthropoda (64.8% of meiofaunal sequence reads) and Rotifera (11.8%) were the most common taxa. This continued impact on meiofaunal assemblage revealed a lower phylogenetic diversity (7.8-fold) in 2018, despite overall decrease in metal concentration (Al, Ba, Cr, As, Fe, Zn, Mn, Pb, Cd, Co) in sediments. Our data suggests that differences in benthic assemblages and loss of diversity may be influenced by contaminants in sediments of this estuary, and indicate that broad eDNA assessments are greatly useful to understand the full range of biodiversity changes in dynamic estuarine ecosystems.


Subject(s)
Disasters , Ecosystem , Animals , Humans , Phylogeny , Geologic Sediments/chemistry , Environmental Monitoring , Metals , Mining
4.
Parasit Vectors ; 14(1): 273, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34022931

ABSTRACT

BACKGROUND: Panstrongylus megistus is the most important vector of Chagas disease in Brazil. Studies show that the principal factor hindering the control of triatomines is reinfestation of houses previously treated with insecticides. Studies at the microgeographic level are therefore necessary to better understand these events. However, an efficient molecular marker is not yet available for carrying out such analyses in this species. The aim of the present study was to identify and characterize microsatellite loci for future population genetic studies of P. megistus. METHODS: This study work consisted of five stages: (i) sequencing of genomic DNA; (ii) assembly and selection of contigs containing microsatellites; (iii) validation of amplification and evaluation of polymorphic loci; (iv) standardization of the polymorphic loci; and (v) verification of cross-amplification with other triatomine species. RESULTS: Sequencing of males and females generated 7,908,463 contigs with a total length of 2,043,422,613 bp. A total of 2,043,690 regions with microsatellites in 1,441,091 contigs were obtained, with mononucleotide repeats being the most abundant class. From a panel of 96 loci it was possible to visualize polymorphisms in 64.55% of the loci. Of the 20 loci genotyped, the number of alleles varied from two to nine with an average of 4.9. Cross-amplification with other species of triatomines was observed in 13 of the loci. CONCLUSIONS: Due to the high number of alleles encountered, polymorphism and the capacity to amplify from geographically distant populations, the microsatellites described here show promise for utilization in population genetic studies of P. megistus.


Subject(s)
Genetics, Population/methods , Insect Vectors/genetics , Microsatellite Repeats , Panstrongylus/genetics , Animals , Brazil , Chagas Disease/transmission , Female , Male , Research Design , Sequence Analysis, DNA
5.
Parasitology ; 148(10): 1171-1185, 2021 09.
Article in English | MEDLINE | ID: mdl-33190649

ABSTRACT

Trypanosoma cruzi has three biochemically and morphologically distinct developmental stages that are programmed to rapidly respond to environmental changes the parasite faces during its life cycle. Unlike other eukaryotes, Trypanosomatid genomes contain protein coding genes that are transcribed into polycistronic pre-mRNAs and have their expression controlled by post-transcriptional mechanisms. Transcriptome analyses comparing three stages of the T. cruzi life cycle revealed changes in gene expression that reflect the parasite adaptation to distinct environments. Several genes encoding RNA binding proteins (RBPs), known to act as key post-transcriptional regulatory factors, were also differentially expressed. We characterized one T. cruzi RBP, named TcZH3H12, which contains a zinc finger domain and is up-regulated in epimastigotes compared to trypomastigotes and amastigotes. TcZC3H12 knockout (KO) epimastigotes showed decreased growth rates and increased capacity to differentiate into metacyclic trypomastigotes. Transcriptome analyses comparing wild type and TcZC3H12 KOs revealed a TcZC3H12-dependent expression of epimastigote-specific genes such as genes encoding amino acid transporters and proteins associated with differentiation (PADs). RNA immunoprecipitation assays showed that transcripts from the PAD family interact with TcZC3H12. Taken together, these findings suggest that TcZC3H12 positively regulates the expression of genes involved in epimastigote proliferation and also acts as a negative regulator of metacyclogenesis.


Subject(s)
Gene Expression , Protozoan Proteins/genetics , Trypanosoma cruzi/genetics , Zinc Fingers/genetics , Amino Acid Sequence , Phylogeny , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sequence Alignment , Trypanosoma cruzi/metabolism
6.
PeerJ ; 7: e8042, 2019.
Article in English | MEDLINE | ID: mdl-31720128

ABSTRACT

Mine tailing disasters have occurred worldwide and contemporary release of tailings of large proportions raise concerns of the chronic impacts that trace metals may have on the aquatic biodiversity. Environmental metabarcoding (eDNA) offers an as yet poorly explored opportunity for biological monitoring of impacted aquatic ecosystems from mine tailings and contaminated sediments. eDNA has been increasingly recognized to be an effective method to detect previously unrecognized small-sized Metazoan taxa, but their ecological responses to environmental pollution has not been assessed by metabarcoding. Here, we evaluated chronic effects of trace metal contamination from sediment eDNA of the Rio Doce estuary, 1.7 years after the Samarco mine tailing disaster, which released over 40 million m3 of iron tailings in the Rio Doce river basin. We identified 123 new sequence variants environmental taxonomic units (eOTUs) of benthic taxa and an assemblage composition dominated by Nematoda, Crustacea and Platyhelminthes; typical of other estuarine ecosystems. We detected environmental filtering on the meiofaunal assemblages and multivariate analysis revealed strong influence of Fe contamination, supporting chronic impacts from mine tailing deposition in the estuary. This was in contrast to environmental filtering of meiofaunal assemblages of non-polluted estuaries. Here, we suggest that the eDNA metabarcoding technique provides an opportunity to fill up biodiversity gaps in coastal marine ecology and may become a valid method for long term monitoring studies in mine tailing disasters and estuarine ecosystems with high trace metals content.

7.
Mem Inst Oswaldo Cruz ; 113(9): e180162, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30066751

ABSTRACT

Eukaryotic initiation factor 5A (eIF5A) is a conserved protein with an essential role in translation elongation. Using one and two-dimensional western blotting, we showed that the eIF5A protein level was 2-fold lower in benznidazole (BZ)-resistant (BZR and 17LER) Trypanosoma cruzi populations than in their respective susceptible counterparts (BZS and 17WTS). To confirm the role of eIF5A in BZ resistance, we transfected BZS and 17WTS with the wild-type eIF5A or mutant eIF5A-S2A (in which serine 2 was replaced by alanine). Upon overexpressing eIF5A, both susceptible lines became approximately 3- and 5-fold more sensitive to BZ. In contrast, the eIF5A-S2A mutant did not alter its susceptibility to BZ. These data suggest that BZ resistance might arise from either decreasing the translation of proteins that require eIF5A, or as a consequence of differential levels of precursors for the hypusination reactions (e.g., spermidine and trypanothione), both of which alter BZ's effects in the parasite.


Subject(s)
Drug Resistance/genetics , Nitroimidazoles/pharmacology , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , Gene Expression , Humans , Peptide Initiation Factors/analysis , Peptide Initiation Factors/drug effects , RNA-Binding Proteins/analysis , RNA-Binding Proteins/drug effects , Trypanosoma cruzi/genetics , Eukaryotic Translation Initiation Factor 5A
8.
Parasit Vectors ; 11(1): 56, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29368659

ABSTRACT

BACKGROUND: Fasciola hepatica is the main agent of fasciolosis, a zoonotic disease affecting livestock worldwide, and an emerging food-borne disease in humans. Even when effective treatments are available, drugs are costly and can result in tolerance, liver damage and normally they do not prevent reinfection. Drug-resistant strains in livestock have been reported in various countries and, more worryingly, drug resistance in human cases has emerged in South America. The present study aims to characterize the transcriptome of two South American resistant isolates, the Cajamarca isolate from Peru, resistant to both triclabendazole and albendazole (TCBZR/ABZR) and the Rubino isolate from Uruguay, resistant to ABZ (TCBZS/ABZR), and compare them to a sensitive strain (Cenapa, Mexico, TCBZS/ABZS) to reveal putative molecular mechanisms leading to drug resistance. RESULTS: We observed a major reduction in transcription in the Cajamarca TCBZR/ABZR isolate in comparison to the other isolates. While most of the differentially expressed genes are still unannotated, several trends could be detected. Specific reduction in the expression levels of cytoskeleton proteins was consistent with a role of tubulins as putative targets of triclabendazole (TCBZ). A marked reduction of adenylate cyclase might be underlying pleiotropic effects on diverse metabolic pathways of the parasite. Upregulation of GST mu isoforms suggests this detoxifying mechanism as one of the strategies associated with resistance. CONCLUSIONS: Our results stress the value of transcriptomic approaches as a means of providing novel insights to advance the understanding of drug mode of action and drug resistance. The results provide evidence for pleiotropic variations in drug-resistant isolates consistent with early observations of TCBZ and ABZ effects and recent proteomic findings.


Subject(s)
Anthelmintics/pharmacology , Drug Resistance, Multiple/genetics , Fasciola hepatica/drug effects , Fasciola hepatica/genetics , Gene Expression , Albendazole/pharmacology , Animals , Fasciola hepatica/isolation & purification , Fascioliasis/epidemiology , Fascioliasis/parasitology , Gene Expression Profiling , Humans , Mexico/epidemiology , Peru/epidemiology , Proteomics , South America/epidemiology , Triclabendazole/pharmacology , Uruguay/epidemiology
9.
Mem. Inst. Oswaldo Cruz ; 113(9): e180162, 2018. graf
Article in English | LILACS | ID: biblio-1040603

ABSTRACT

Eukaryotic initiation factor 5A (eIF5A) is a conserved protein with an essential role in translation elongation. Using one and two-dimensional western blotting, we showed that the eIF5A protein level was 2-fold lower in benznidazole (BZ)-resistant (BZR and 17LER) Trypanosoma cruzi populations than in their respective susceptible counterparts (BZS and 17WTS). To confirm the role of eIF5A in BZ resistance, we transfected BZS and 17WTS with the wild-type eIF5A or mutant eIF5A-S2A (in which serine 2 was replaced by alanine). Upon overexpressing eIF5A, both susceptible lines became approximately 3- and 5-fold more sensitive to BZ. In contrast, the eIF5A-S2A mutant did not alter its susceptibility to BZ. These data suggest that BZ resistance might arise from either decreasing the translation of proteins that require eIF5A, or as a consequence of differential levels of precursors for the hypusination reactions (e.g., spermidine and trypanothione), both of which alter BZ's effects in the parasite.


Subject(s)
Humans , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , Drug Resistance/genetics , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , Nitroimidazoles/pharmacology , Trypanosoma cruzi/genetics , Gene Expression , Peptide Initiation Factors/analysis , Peptide Initiation Factors/drug effects , RNA-Binding Proteins/analysis , RNA-Binding Proteins/drug effects
10.
Sci Adv ; 3(7): e1700299, 2017 07.
Article in English | MEDLINE | ID: mdl-28776029

ABSTRACT

The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages.


Subject(s)
Evolution, Molecular , Genome , Genomics , Panthera/genetics , Animals , Computational Biology/methods , Genetic Variation , Genome-Wide Association Study , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phylogeny , Selection, Genetic
11.
PLoS One ; 12(6): e0178829, 2017.
Article in English | MEDLINE | ID: mdl-28622369

ABSTRACT

Once inside a vertebrate host after infection, individual schistosomula of the parasite Schistosoma mansoni find a new and complex environment, which requires quick adjustments for survival, such as those that allow it to avoid the innate immune response of the host. Thus, it is very important for the parasite to remain within the skin after entering the host for a period of about 3 days, at which time it can then reach the venous system, migrate to the lungs and, by the end of eighth day post-infection, it reach the portal venous system, while undergoing minimal changes in morphology. However, after just a few days in the portal blood system, the parasite experiences an extraordinary increase in biomass and significant morphological alterations. Therefore, determining the constituents of the portal venous system that may trigger these changes that causes the parasite to consolidate its development inside the vertebrate host, thus causing the disease schistosomiasis, is essential. The present work simulated the conditions found in the portal venous system of the vertebrate host by exposing schistosomula of S. mansoni to in vitro culture in the presence of portal serum of the hamster, Mesocricetus auratus. Two different incubation periods were evaluated, one of 3 hours and one of 12 hours. These time periods were used to mimic the early contact of the parasite with portal serum during the course of natural infection. As a control, parasites were incubated in presence of hamster peripheral serum, in order to compare gene expression signatures between the two conditions. The mRNA obtained from parasites cultured under both conditions were submitted to a whole transcriptome library preparation and sequenced with a next generation platform. On average, nearly 15 million reads were produced per sample and, for the purpose of gene expression quantification, only reads mapped to one location of the transcriptome were considered. After statistical analysis, we found 103 genes differentially expressed by schistosomula cultured for 3 hours and 12 hours in the presence of hamster portal serum. After the subtraction of a second list of genes, also differentially expressed between schistosomula cultured for 3 hours and 12 hours in presence of peripheral serum, a set of 58 genes was finally established. This pattern was further validated for a subset of 17 genes, by measuring gene expression through quantitative real time polymerase chain reaction (qPCR). Processes that were activated by the portal serum stimulus include response to stress, membrane transport, protein synthesis and folding/degradation, signaling, cytoskeleton arrangement, cell adhesion and nucleotide synthesis. Additionally, a smaller number of genes down-regulated under the same condition act on cholinergic signaling, inorganic cation and organic anion membrane transport, cell adhesion and cytoskeleton arrangement. Considering the role of these genes in triggering processes that allow the parasite to quickly adapt, escape the immune response of the host and start maturation into an adult worm after contact with the portal serum, this work may point to unexplored molecular targets for drug discovery and vaccine development against schistosomiasis.


Subject(s)
Gene Expression Regulation/drug effects , RNA, Helminth , RNA, Messenger , Schistosoma mansoni , Sequence Analysis, RNA/methods , Serum/chemistry , Transcriptome/drug effects , Animals , Cricetinae , Mesocricetus , RNA, Helminth/biosynthesis , RNA, Helminth/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Schistosoma mansoni/genetics , Schistosoma mansoni/metabolism
12.
Infect Genet Evol ; 53: 175-188, 2017 09.
Article in English | MEDLINE | ID: mdl-28506839

ABSTRACT

The availability of the genomic data of diverse parasites provides an opportunity to identify new drug candidates against neglected tropical diseases affecting people worldwide. Histone modifying enzymes (HMEs) are potential candidates since they play key roles in the regulation of chromatin modifications, thus globally regulating gene expression. Furthermore, aberrant epigenetic states are often associated with human diseases, leading to great interest in HMEs as therapeutic targets. Our work focused on two families of protein lysine deacetylases (HDACs and sirtuins). First, we identified potential homologues in the predicted proteomes of selected taxa by using hidden Markov model profiles. Then, we reconstructed the evolutionary relationships of protein sequences by Bayesian inference and maximum likelihood method. In addition, we constructed homology models for five parasite HDACs to provide information for experimental validation and structure-based optimization of inhibitors. Our results showed that parasite genomes code for diverse HDACs and sirtuins. The evolutionary pattern of protein deacetylases with additional experimental data points to these enzymes as common drug targets among parasites. This work has improved the functional annotation of approximately 63% HDACs and 51% sirtuins in the selected taxa providing insights for experimental design. Homology models pointed out structural conservation and differences among parasite and human homologues and highlight potential candidates for further inhibitor development. Some of these parasite proteins are undergoing RNA interference or knockout analyses to validate the function of their corresponding genes. In the future, we will investigate the main functions performed by these proteins, related phenotypes, and their potential as therapeutic targets.


Subject(s)
Anthelmintics/chemistry , Antiprotozoal Agents/chemistry , Genome , Helminth Proteins/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Protozoan Proteins/chemistry , Animals , Anthelmintics/pharmacology , Antiprotozoal Agents/pharmacology , Databases, Genetic , Epigenesis, Genetic , Evolution, Molecular , Gene Expression , Helminth Proteins/antagonists & inhibitors , Helminth Proteins/genetics , Helminth Proteins/metabolism , Helminthiasis/drug therapy , Helminthiasis/parasitology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Leishmania/drug effects , Leishmania/enzymology , Leishmania/genetics , Molecular Docking Simulation , Neglected Diseases , Phylogeny , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protein Conformation , Protozoan Infections/drug therapy , Protozoan Infections/parasitology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schistosoma/drug effects , Schistosoma/enzymology , Schistosoma/genetics , Structural Homology, Protein , Trypanosoma/drug effects , Trypanosoma/enzymology , Trypanosoma/genetics
13.
PLoS Negl Trop Dis ; 10(6): e0004817, 2016 06.
Article in English | MEDLINE | ID: mdl-27332714

ABSTRACT

BACKGROUND: In early 2015, a ZIKA Virus (ZIKV) infection outbreak was recognized in northeast Brazil, where concerns over its possible links with infant microcephaly have been discussed. Providing a causal link between ZIKV infection and birth defects is still a challenge. MicroRNAs (miRNAs) are small noncoding RNAs (sncRNAs) that regulate post-transcriptional gene expression by translational repression, and play important roles in viral pathogenesis and brain development. The potential for flavivirus-mediated miRNA signalling dysfunction in brain-tissue development provides a compelling hypothesis to test the perceived link between ZIKV and microcephaly. METHODOLOGY/PRINCIPAL FINDINGS: Here, we applied in silico analyses to provide novel insights to understand how Congenital ZIKA Syndrome symptoms may be related to an imbalance in miRNAs function. Moreover, following World Health Organization (WHO) recommendations, we have assembled a database to help target investigations of the possible relationship between ZIKV symptoms and miRNA-mediated human gene expression. CONCLUSIONS/SIGNIFICANCE: We have computationally predicted both miRNAs encoded by ZIKV able to target genes in the human genome and cellular (human) miRNAs capable of interacting with ZIKV genomes. Our results represent a step forward in the ZIKV studies, providing new insights to support research in this field and identify potential targets for therapy.


Subject(s)
Databases, Factual , Genome, Viral , MicroRNAs/genetics , RNA, Viral/genetics , Zika Virus Infection/virology , Zika Virus/genetics , Humans , Phylogeny , Zika Virus Infection/pathology
15.
BMC Genomics ; 16 Suppl 5: S1, 2015.
Article in English | MEDLINE | ID: mdl-26041622

ABSTRACT

BACKGROUND: Ninety-two Streptococcus pneumoniae serotypes have been described so far, but the pneumococcal conjugate vaccine introduced in the Brazilian basic vaccination schedule in 2010 covers only the ten most prevalent in the country. Pneumococcal serotype-shifting after massive immunization is a major concern and monitoring this phenomenon requires efficient and accessible serotyping methods. Pneumococcal serotyping based on antisera produced in animals is laborious and restricted to a few reference laboratories. Alternatively, molecular serotyping methods assess polymorphisms in the cps gene cluster, which encodes key enzymes for capsular polysaccharides synthesis in pneumococci. In one such approach, cps-RFLP, the PCR amplified cps loci are digested with an endonuclease, generating serotype-specific fingerprints on agarose gel electrophoresis. METHODS: In this work, in silico and in vitro approaches were combined to demonstrate that XhoII is the most discriminating endonuclease for cps-RFLP, and to build a database of serotype-specific fingerprints that accommodates the genetic diversity within the cps locus of 92 known pneumococci serotypes. RESULTS: The expected specificity of cps-RFLP using XhoII was 76% for serotyping and 100% for serogrouping. The database of cps-RFLP fingerprints was integrated to Molecular Serotyping Tool (MST), a previously published web-based software for molecular serotyping. In addition, 43 isolates representing 29 serotypes prevalent in the state of Minas Gerais, Brazil, from 2007 to 2013, were examined in vitro; 11 serotypes (nine serogroups) matched the respective in silico patterns calculated for reference strains. The remaining experimental patterns, despite their resemblance to their expected in silico patterns, did not reach the threshold of similarity score to be considered a match and were then added to the database. CONCLUSION: The cps-RFLP method with XhoII outperformed the antisera-based and other molecular serotyping methods in regard of the expected specificity. In order to accommodate the genetic variability of the pneumococci cps loci, the database of cps-RFLP patterns will be progressively expanded to include new variant in vitro patterns. The cps-RFLP method with endonuclease XhoII coupled with MST for computer-assisted interpretation of results may represent a relevant contribution to the real time detection of changes in regional pneumococci population diversity in response to mass immunization programs.


Subject(s)
DNA, Bacterial/genetics , Molecular Typing/methods , Serotyping/methods , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/genetics , Brazil , Deoxyribonucleases, Type II Site-Specific , Genes, Bacterial , Genetic Variation , Pneumococcal Vaccines/immunology , Polymorphism, Restriction Fragment Length , Streptococcus pneumoniae/isolation & purification
16.
Parasit Vectors ; 8: 226, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25889010

ABSTRACT

BACKGROUND: Certain municipalities in the Belo Horizonte Metropolitan Area (BHMA), Minas Gerais, Brazil, have the highest human visceral leishmaniasis (VL) mortality rates in the country and also demonstrate high canine seropositivity. In Brazil, the etiologic agent of VL is Leishmania (Leishmania) infantum. The aim of this study was to evaluate the intraspecific genetic variability of parasites from humans and from dogs with different clinical forms of VL in five municipalities of BHMA using PCR-RFLP and two target genes: kinetoplast DNA (kDNA) and gp63. METHODS: In total, 45 samples of DNA extracted from clinical samples (n = 35) or L. infantum culture (n = 10) were evaluated. These samples originated from three groups: adults (with or without Leishmania/HIV co-infection; n = 14), children (n = 18) and dogs (n = 13). The samples were amplified for the kDNA target using the MC1 and MC2 primers (447 bp), while the Sg1 and Sg2 (1330 bp) primers were used for the gp63 glycoprotein target gene. RESULTS: The restriction enzyme patterns of all the samples tested were monomorphic. CONCLUSIONS: These findings reveal a high degree of genetic homogeneity for the evaluated gene targets among L. infantum samples isolated from different hosts and representing different clinical forms of VL in the municipalities of BHMA studied.


Subject(s)
Genetic Variation , Leishmania infantum/classification , Leishmania infantum/genetics , Leishmaniasis, Visceral/parasitology , Animals , Brazil/epidemiology , Cities/epidemiology , Cluster Analysis , DNA Fingerprinting , DNA, Kinetoplast/genetics , DNA, Protozoan/genetics , Dog Diseases/epidemiology , Dog Diseases/parasitology , Dogs , Humans , Leishmania infantum/isolation & purification , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/veterinary , Metalloendopeptidases/genetics , Molecular Epidemiology , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
17.
Front Genet ; 5: 206, 2014.
Article in English | MEDLINE | ID: mdl-25071834

ABSTRACT

The cystatin family comprises cysteine protease inhibitors distributed in 3 subfamilies (I25A-C). Family members lacking cystatin activity are currently unclassified. Little is known about the evolution of Schistosoma cystatins, their physiological roles, and expression patterns in the parasite life cycle. The present study aimed to identify cystatin homologs in the predicted proteome of three Schistosoma species and other Platyhelminthes. We analyzed the amino acid sequence diversity focused in the identification of protein signatures and to establish evolutionary relationships among Schistosoma and experimentally validated human cystatins. Gene expression patterns were obtained from different developmental stages in Schistosoma mansoni using microarray data. In Schistosoma, only I25A and I25B proteins were identified, reflecting little functional diversification. I25C and unclassified subfamily members were not identified in platyhelminth species here analyzed. The resulting phylogeny placed cystatins in different clades, reflecting their molecular diversity. Our findings suggest that Schistosoma cystatins are very divergent from their human homologs, especially regarding the I25B subfamily. Schistosoma cystatins also differ significantly from other platyhelminth homologs. Finally, transcriptome data publicly available indicated that I25A and I25B genes are constitutively expressed thus could be essential for schistosome life cycle progression. In summary, this study provides insights into the evolution, classification, and functional diversification of cystatins in Schistosoma and other Platyhelminthes, improving our understanding of parasite biology and opening new frontiers in the identification of novel therapeutic targets against helminthiases.

18.
Algorithms Mol Biol ; 9(1): 4, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24602402

ABSTRACT

BACKGROUND: Multiple sequence alignment (MSA) is an extremely useful tool for molecular and evolutionary biology and there are several programs and algorithms available for this purpose. Although previous studies have compared the alignment accuracy of different MSA programs, their computational time and memory usage have not been systematically evaluated. Given the unprecedented amount of data produced by next generation deep sequencing platforms, and increasing demand for large-scale data analysis, it is imperative to optimize the application of software. Therefore, a balance between alignment accuracy and computational cost has become a critical indicator of the most suitable MSA program. We compared both accuracy and cost of nine popular MSA programs, namely CLUSTALW, CLUSTAL OMEGA, DIALIGN-TX, MAFFT, MUSCLE, POA, Probalign, Probcons and T-Coffee, against the benchmark alignment dataset BAliBASE and discuss the relevance of some implementations embedded in each program's algorithm. Accuracy of alignment was calculated with the two standard scoring functions provided by BAliBASE, the sum-of-pairs and total-column scores, and computational costs were determined by collecting peak memory usage and time of execution. RESULTS: Our results indicate that mostly the consistency-based programs Probcons, T-Coffee, Probalign and MAFFT outperformed the other programs in accuracy. Whenever sequences with large N/C terminal extensions were present in the BAliBASE suite, Probalign, MAFFT and also CLUSTAL OMEGA outperformed Probcons and T-Coffee. The drawback of these programs is that they are more memory-greedy and slower than POA, CLUSTALW, DIALIGN-TX, and MUSCLE. CLUSTALW and MUSCLE were the fastest programs, being CLUSTALW the least RAM memory demanding program. CONCLUSIONS: Based on the results presented herein, all four programs Probcons, T-Coffee, Probalign and MAFFT are well recommended for better accuracy of multiple sequence alignments. T-Coffee and recent versions of MAFFT can deliver faster and reliable alignments, which are specially suited for larger datasets than those encountered in the BAliBASE suite, if multi-core computers are available. In fact, parallelization of alignments for multi-core computers should probably be addressed by more programs in a near future, which will certainly improve performance significantly.

19.
Nucleic Acids Res ; 37(10): 3407-17, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19336417

ABSTRACT

A novel large multigene family was recently identified in the human pathogen Trypanosoma cruzi, causative agent of Chagas disease, and corresponds to approximately 6% of the parasite diploid genome. The predicted gene products, mucin-associated surface proteins (MASPs), are characterized by highly conserved N- and C-terminal domains and a strikingly variable and repetitive central region. We report here an analysis of the genomic organization and expression profile of masp genes. Masps are not randomly distributed throughout the genome but instead are clustered with genes encoding mucin and other surface protein families. Masp transcripts vary in size, are preferentially expressed during the trypomastigote stage and contain highly conserved 5' and 3' untranslated regions. A sequence analysis of a trypomastigote cDNA library reveals the expression of multiple masp variants with a bias towards a particular masp subgroup. Immunofluorescence assays using antibodies generated against a MASP peptide reveals that the expression of particular MASPs at the cell membrane is limited to subsets of the parasite population. Western blots of phosphatidylinositol-specific phospholipase C (PI-PLC)-treated parasites suggest that MASP may be GPI-anchored and shed into the medium culture, thus contributing to the large repertoire of parasite polypeptides that are exposed to the host immune system.


Subject(s)
Membrane Proteins/genetics , Multigene Family , Protozoan Proteins/genetics , Trypanosoma cruzi/genetics , 3' Flanking Region , 5' Flanking Region , Amino Acid Sequence , Animals , Base Sequence , Conserved Sequence , Gene Expression Profiling , Genes, Protozoan , Genome, Protozoan , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Molecular Sequence Data , Mucins/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism
20.
Microbes Infect ; 10(7): 716-25, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18538614

ABSTRACT

Trypanosoma cruzi expresses several proteins containing antigenic amino acid repeats. Here we characterized TcRpL7a and TcRBP28, which carry similar repeat motifs and share homology to the eukaryotic L7a ribosomal protein and to a Trypanosoma brucei RNA binding protein, respectively. Analyses of the full length and truncated recombinant TcRpL7a showed that the humoral response of patients with Chagas disease is directed towards its repetitive domain. Sequence analyses of distinct copies of TcRpL7a genes present in the genome of six T. cruzi strains indicate that the number of repeats is higher in proteins from T. cruzi II than T. cruzi I strains. A serum panel of 59 T. cruzi infected patients showed that 73% reacted with TcRpL7a, 71% reacted with TcRBP28 and 80% reacted with 1:1 mixture of both antigens. Synthetic peptides harboring the TcRpL7a repeat motif reacted with 46% of the serum samples. Antibodies raised against both antigens identified equivalent amounts of the native proteins in all three stages of the parasite life cycle. Analyses of subcellular fractions indicated that TcRBP28 is present in the cytoplasm whereas TcRpL7a co-fractionates with polysomes. Confirming their predicted cellular localization, GFP fusions showed that, whereas GFP::TcRBP28 localizes in the cytoplasm, GFP::TcRpL7a accumulates in the nucleus, where ribosome biogenesis occurs.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Autoantigens/immunology , Repetitive Sequences, Amino Acid , Trypanosoma cruzi/immunology , Amino Acid Sequence , Animals , Antigens, Protozoan/analysis , Antigens, Protozoan/genetics , Autoantigens/analysis , Autoantigens/genetics , Cell Nucleus/chemistry , Chagas Disease/immunology , Cytoplasm/chemistry , Epitope Mapping , Humans , Molecular Sequence Data , Peptides/immunology , Sequence Alignment , Trypanosoma cruzi/genetics , snRNP Core Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...