Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Development ; 150(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36683434

ABSTRACT

Base editing by CRISPR crucially depends on the presence of a protospacer adjacent motif (PAM) at the correct distance from the editing site. Here, we present and validate an efficient one-shot approach termed 'inception' that expands the editing range. This is achieved by sequential, combinatorial base editing: de novo generated synonymous, non-synonymous or intronic PAM sites facilitate subsequent base editing at nucleotide positions that were initially inaccessible, further opening the targeting range of highly precise editing approaches. We demonstrate the applicability of the inception concept in medaka (Oryzias latipes) in three settings: loss of function, by introducing a pre-termination STOP codon in the open reading frame of oca2; locally confined multi-codon changes to generate allelic variants with different phenotypic severity in kcnh6a; and the removal of a splice acceptor site by targeting intronic sequences of rx3. Using sequentially acting base editors in the described combinatorial approach expands the number of accessible target sites by 65% on average. This allows the use of well-established tools with NGG PAM recognition for the establishment of thus far unreachable disease models, for hypomorphic allele studies and for efficient targeted mechanistic investigations in a precise and predictable manner.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Oryzias/genetics
2.
Nat Chem Biol ; 18(1): 64-69, 2022 01.
Article in English | MEDLINE | ID: mdl-34934192

ABSTRACT

Direct control of protein interactions by chemically induced protein proximity holds great potential for both cell and synthetic biology as well as therapeutic applications. Low toxicity, orthogonality and excellent cell permeability are important criteria for chemical inducers of proximity (CIPs), in particular for in vivo applications. Here, we present the use of the agrochemical mandipropamid (Mandi) as a highly efficient CIP in cell culture systems and living organisms. Mandi specifically induces complex formation between a sixfold mutant of the plant hormone receptor pyrabactin resistance 1 (PYR1) and abscisic acid insensitive (ABI). It is orthogonal to other plant hormone-based CIPs and rapamycin-based CIP systems. We demonstrate the applicability of the Mandi system for rapid and efficient protein translocation in mammalian cells and zebrafish embryos, protein network shuttling and manipulation of endogenous proteins.


Subject(s)
Amides/pharmacology , Carboxylic Acids/pharmacology , Fungicides, Industrial/pharmacology , Abscisic Acid/metabolism , Animals , Dimerization , Zebrafish/embryology
3.
Development ; 148(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34106226

ABSTRACT

Defects in the evolutionarily conserved protein-glycosylation machinery during embryonic development are often fatal. Consequently, congenital disorders of glycosylation (CDG) in human are rare. We modelled a putative hypomorphic mutation described in an alpha-1,3/1,6-mannosyltransferase (ALG2) index patient (ALG2-CDG) to address the developmental consequences in the teleost medaka (Oryzias latipes). We observed specific, multisystemic, late-onset phenotypes, closely resembling the patient's syndrome, prominently in the facial skeleton and in neuronal tissue. Molecularly, we detected reduced levels of N-glycans in medaka and in the patient's fibroblasts. This hypo-N-glycosylation prominently affected protein abundance. Proteins of the basic glycosylation and glycoprotein-processing machinery were over-represented in a compensatory response, highlighting the regulatory topology of the network. Proteins of the retinal phototransduction machinery, conversely, were massively under-represented in the alg2 model. These deficiencies relate to a specific failure to maintain rod photoreceptors, resulting in retinitis pigmentosa characterized by the progressive loss of these photoreceptors. Our work has explored only the tip of the iceberg of N-glycosylation-sensitive proteins, the function of which specifically impacts on cells, tissues and organs. Taking advantage of the well-described human mutation has allowed the complex interplay of N-glycosylated proteins and their contribution to development and disease to be addressed.


Subject(s)
Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Oryzias/genetics , Oryzias/metabolism , Animals , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , Humans , Mutation , Phenotype , Polysaccharides , Retinitis Pigmentosa
SELECTION OF CITATIONS
SEARCH DETAIL