Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 932, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296946

ABSTRACT

Stacking of two-dimensional (2D) materials has emerged as a facile strategy for realising exotic quantum states of matter and engineering electronic properties. Yet, developments beyond the proof-of-principle level are impeded by the vast size of the configuration space defined by layer combinations and stacking orders. Here we employ a density functional theory (DFT) workflow to calculate interlayer binding energies of 8451 homobilayers created by stacking 1052 different monolayers in various configurations. Analysis of the stacking orders in 247 experimentally known van der Waals crystals is used to validate the workflow and determine the criteria for realisable bilayers. For the 2586 most stable bilayer systems, we calculate a range of electronic, magnetic, and vibrational properties, and explore general trends and anomalies. We identify an abundance of bistable bilayers with stacking order-dependent magnetic or electrical polarisation states making them candidates for slidetronics applications.

2.
ACS Nano ; 18(6): 4746-4755, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38290223

ABSTRACT

Intercalation (ic) of metal atoms into the van der Waals (vdW) gap of layered materials constitutes a facile strategy to create materials whose properties can be tuned via the concentration of the intercalated atoms. Here we perform systematic density functional theory calculations to explore various properties of an emergent class of crystalline 2D materials (ic-2D materials) comprising vdW homobilayers with native metal atoms on a sublattice of intercalation sites. From an initial set of 1348 ic-2D materials, generated from 77 vdW homobilayers, we find 95 structures with good thermodynamic stability (formation energy within 200 meV/atom of the convex hull). A significant fraction of the semiconducting host materials are found to undergo an insulator to metal transition upon self-intercalation, with only PdS2, PdSe2, and GeS2 maintaining a finite electronic gap. In five cases, self-intercalation introduces magnetism. In general, self-intercalation is found to promote metallicity and enhance the chemical reactivity on the basal plane. Based on the calculated H binding energy, we find that self-intercalated SnS2 and Hf3Te2 are promising candidates for hydrogen evolution catalysis. All the stable ic-2D structures and their calculated properties can be explored in the open C2DB database.

3.
Adv Mater ; 32(31): e2001656, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32529706

ABSTRACT

The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue toward engineering the properties of quantum materials. Twisted bilayer graphene is a key material in this regard because the superlattice produced by the rotated graphene layers introduces a van Hove singularity and flat bands near the Fermi energy that cause the emergence of numerous correlated phases, including superconductivity. Direct demonstration of electrostatic control of the superlattice bands over a wide energy range has, so far, been critically missing. This work examines the effect of electrical doping on the electronic band structure of twisted bilayer graphene using a back-gated device architecture for angle-resolved photoemission measurements with a nano-focused light spot. A twist angle of 12.2° is selected such that the superlattice Brillouin zone is sufficiently large to enable identification of van Hove singularities and flat band segments in momentum space. The doping dependence of these features is extracted over an energy range of 0.4 eV, expanding the combinations of twist angle and doping where they can be placed at the Fermi energy and thereby induce new correlated electronic phases in twisted bilayer graphene.

4.
Nat Commun ; 11(1): 2035, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32341361

ABSTRACT

Two-dimensional layered perovskites are attracting increasing attention as more robust analogues to the conventional three-dimensional metal-halide perovskites for both light harvesting and light emitting applications. However, the impact of the reduced dimensionality on the optoelectronic properties remains unclear, particularly regarding the spatial dynamics of the excitonic excited state within the two-dimensional plane. Here, we present direct measurements of exciton transport in single-crystalline layered perovskites. Using transient photoluminescence microscopy, we show that excitons undergo an initial fast diffusion through the crystalline plane, followed by a slower subdiffusive regime as excitons get trapped. Interestingly, the early intrinsic diffusivity depends sensitively on the choice of organic spacer. A clear correlation between lattice stiffness and diffusivity is found, suggesting exciton-phonon interactions to be dominant in the spatial dynamics of the excitons in perovskites, consistent with the formation of exciton-polarons. Our findings provide a clear design strategy to optimize exciton transport in these systems.

5.
Phys Rev Lett ; 123(7): 077402, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31491087

ABSTRACT

We predict that long-lived excitons with very large binding energies can also exist in a single or few layers of monochalcogenides such as GaSe. Our theoretical study shows that excitons confined by a radial local strain field are unable to recombine despite electrons and holes coexisting in space. The localized single-particle states are calculated in the envelope function approximation based on a three-band k·p Hamiltonian obtained from density-functional-theory calculations. The binding energy and the decay rate of the exciton ground state are computed after including correlations in the basis of electron-hole pairs. The interplay between the localized strain and the caldera-type valence band characteristic of few-layered monochalcogenides creates localized electron and hole states with very different quantum numbers which hinders the recombination even for singlet excitons.

6.
Nanotechnology ; 30(24): 24LT01, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-30822757

ABSTRACT

Few-layer GaSe is one of the latest additions to the family of two-dimensional semiconducting crystals whose properties under strain are still relatively unexplored. Here, we study rippled nanosheets that exhibit a periodic compressive and tensile strain of up to 5%. The strain profile modifies the local optoelectronic properties of the alternating compressive and tensile regions, which translates into a remarkable shift of the optical absorption band-edge of up to 1.2 eV between crests and valleys. Our experimental observations are supported by theoretical results from density functional theory calculations performed for monolayers and multilayers (up to seven layers) under tensile and compressive strain. This large band gap tunability can be explained through a combined analysis of the elastic response of Ga atoms to strain and the symmetry of the wave functions.

7.
Beilstein J Nanotechnol ; 9: 1015-1023, 2018.
Article in English | MEDLINE | ID: mdl-29719753

ABSTRACT

We present an implementation of spin-orbit coupling (SOC) for density functional theory band structure calculations that makes use of Gaussian basis sets. It is based on the explicit evaluation of SOC matrix elements, both the radial and angular parts. For all-electron basis sets, where the full nodal structure is present in the basis elements, the results are in good agreement with well-established implementations such as VASP. For more practical pseudopotential basis sets, which lack nodal structure, an ad-hoc increase of the effective nuclear potential helps to capture all relevant band structure variations induced by SOC. In this work, the non-relativistic or scalar-relativistic Kohn-Sham Hamiltonian is obtained from the CRYSTAL code and the SOC term is added a posteriori. As an example, we apply this method to the Bi(111) monolayer, a paradigmatic 2D topological insulator, and to mono- and multilayer Sb(111) (also known as antimonene), the former being a trivial semiconductor and the latter a topological semimetal featuring topologically protected surface states.

SELECTION OF CITATIONS
SEARCH DETAIL
...