Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Genome ; 17(1): e20427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38239091

ABSTRACT

Buckwheat (Fagopyrum spp.) is an important nutritional and nutraceutical-rich pseudo-cereal crop. Despite its obvious potential as a functional food, buckwheat has not been fully harnessed due to its low yield, self-incompatibility, increased seed cracking, limited seed set, lodging, and frost susceptibility. The inadequate availability of genomics resources in buckwheat is one of the major reasons for this. In the present study, genome-wide association mapping (GWAS) was conducted to identify loci associated with various morphological and yield-related traits in buckwheat. High throughput genotyping by sequencing led to the identification of 34,978 single nucleotide polymorphisms that were distributed across eight chromosomes. Population structure analysis grouped the genotypes into three sub-populations. The genotypes were also characterized for various qualitative and quantitative traits at two diverse locations, the analysis of which revealed a significant difference in the mean values. The association analysis revealed a total of 71 significant marker-trait associations across eight chromosomes. The candidate genes were identified near 100 Kb of quantitative trait loci (QTLs), providing insights into several metabolic and biosynthetic pathways. The integration of phenology and GWAS in the present study is useful to uncover the consistent genomic regions, related markers associated with various yield-related traits, and potential candidate genes having implications for being utilized in molecular breeding for the improvement of economically important traits in buckwheat. Moreover, the identified QTLs will assist in tracking the desirable alleles of target genes within the buckwheat breeding populations/germplasm.


Subject(s)
Fagopyrum , Quantitative Trait Loci , Fagopyrum/genetics , Genotype , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Genetic Linkage , Plant Breeding
2.
PeerJ ; 11: e15901, 2023.
Article in English | MEDLINE | ID: mdl-37719119

ABSTRACT

Rice is one of the most important staple plant foods that provide a major source of calories and nutrients for tackling the global hunger index especially in developing countries. In terms of nutritional profile, pigmented rice grains are favoured for their nutritional and health benefits. The pigmented rice varieties are rich sources of flavonoids, anthocyanin and proanthocyanidin that can be readily incorporated into diets to help address various lifestyle diseases. However, the cultivation of pigmented rice is limited due to low productivity and unfavourable cooking qualities. With the advances in genome sequencing, molecular breeding, gene expression analysis and multi-omics approaches, various attempts have been made to explore the genetic architecture of rice grain pigmentation. In this review, we have compiled the current state of knowledge of the genetic architecture and nutritional value of pigmentation in rice based upon the available experimental evidence. Future research areas that can help to deepen our understanding and help in harnessing the economic and health benefits of pigmented rice are also explored.


Subject(s)
Oryza , Oryza/genetics , Nutritive Value , Anthocyanins , Chromosome Mapping , Cooking
3.
3 Biotech ; 13(7): 252, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37388856

ABSTRACT

Contemporary scientific findings revealed that our daily food stuffs are enriched by encrypted bioactive peptides (BPs), evolved by peptide linkage of amino acids or encrypted from the native protein structures. Remarkable to these BPs lies in their potential health benefiting biological activities to serve as nutraceuticals or a lead addition to the development of functional foods. The biological activities of BPs vary depending on the sequence as well as amino acid composition. Existing database records approximately 3000 peptide sequences which possess potential biological activities such as antioxidants, antihypertensive, antithrombotic, anti-adipogenics, anti-microbials, anti-inflammatory, and anti-cancerous. The growing evidences suggest that BPs have very low toxicity, higher accuracy, less tissue accretion, and are easily degraded in the disposed environment. BPs are nowadays evolved as biologically active molecules with potential scope to reduce microbial contamination as well as ward off oxidation of foods, amend diverse range of human diseases to enhance the overall quality of human life. Against the clinical and health perspectives of BPs, this review aimed to elaborate current evolution of nutritional potential of BPs, studies pertaining to overcome limitations with respect to special focus on emerging extraction, protection and delivery tools of BPs. In addition, the nano-delivery mechanism of BP and its clinical significance is detailed. The aim of current review is to augment the research in the field of BPs production, identification, characterisation and to speed up the investigation of the incredible potentials of BPs as potential nutritional and functional food ingredient.

4.
Front Plant Sci ; 13: 888710, 2022.
Article in English | MEDLINE | ID: mdl-35720588

ABSTRACT

The change in climatic conditions is the major cause for decline in crop production worldwide. Decreasing crop productivity will further lead to increase in global hunger rate. Climate change results in environmental stress which has negative impact on plant-like deficiencies in growth, crop yield, permanent damage, or death if the plant remains in the stress conditions for prolonged period. Cold stress is one of the main abiotic stresses which have already affected the global crop production. Cold stress adversely affects the plants leading to necrosis, chlorosis, and growth retardation. Various physiological, biochemical, and molecular responses under cold stress have revealed that the cold resistance is more complex than perceived which involves multiple pathways. Like other crops, legumes are also affected by cold stress and therefore, an effective technique to mitigate cold-mediated damage is critical for long-term legume production. Earlier, crop improvement for any stress was challenging for scientific community as conventional breeding approaches like inter-specific or inter-generic hybridization had limited success in crop improvement. The availability of genome sequence, transcriptome, and proteome data provides in-depth sight into different complex mechanisms under cold stress. Identification of QTLs, genes, and proteins responsible for cold stress tolerance will help in improving or developing stress-tolerant legume crop. Cold stress can alter gene expression which further leads to increases in stress protecting metabolites to cope up the plant against the temperature fluctuations. Moreover, genetic engineering can help in development of new cold stress-tolerant varieties of legume crop. This paper provides a general insight into the "omics" approaches for cold stress in legume crops.

SELECTION OF CITATIONS
SEARCH DETAIL
...