Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
PLoS Negl Trop Dis ; 17(10): e0011652, 2023 10.
Article in English | MEDLINE | ID: mdl-37824592

ABSTRACT

INTRODUCTION: Screening for G6PD deficiency can inform disease management including malaria. Treatment with the antimalarial drugs primaquine and tafenoquine can be guided by point-of-care testing for G6PD deficiency. METHODS AND FINDINGS: Data from similar clinical studies evaluating the performance of the STANDARD G6PD Test (SD Biosensor, South Korea) conducted in Bangladesh, Brazil, Ethiopia, India, Thailand, the United Kingdom, and the United States were pooled. Test performance was assessed in a retrospective analysis on capillary and venous specimens. All study sites used spectrophotometry for reference G6PD testing, and either the HemoCue or complete blood count for reference hemoglobin measurement. The sensitivity of the STANDARD G6PD Test using the manufacturer thresholds for G6PD deficient and intermediate cases in capillary specimens from 4212 study participants was 100% (95% Confidence Interval (CI): 97.5%-100%) for G6PD deficient cases with <30% activity and 77% (95% CI 66.8%-85.4%) for females with intermediate activity between 30%-70%. Specificity was 98.1% (95% CI 97.6%-98.5%) and 92.8% (95% CI 91.6%-93.9%) for G6PD deficient individuals and intermediate females, respectively. Out of 20 G6PD intermediate females with false normal results, 12 had activity levels >60% on the reference assay. The negative predictive value for females with G6PD activity >60% was 99.6% (95% CI 99.1%-99.8%) on capillary specimens. Sensitivity among 396 P. vivax malaria cases was 100% (69.2%-100.0%) for both deficient and intermediate cases. Across the full dataset, 37% of those classified as G6PD deficient or intermediate resulted from true normal cases. Despite this, over 95% of cases would receive correct treatment with primaquine, over 87% of cases would receive correct treatment with tafenoquine, and no true G6PD deficient cases would be treated inappropriately based on the result of the STANDARD G6PD Test. CONCLUSIONS: The STANDARD G6PD Test enables safe access to drugs which are contraindicated for individuals with G6PD deficiency. Operational considerations will inform test uptake in specific settings.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Female , Humans , Primaquine/therapeutic use , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Retrospective Studies , Antimalarials/therapeutic use , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control
2.
PLoS One ; 18(7): e0287814, 2023.
Article in English | MEDLINE | ID: mdl-37467188

ABSTRACT

The relationship between N-antigen concentration and viral load within and across different specimens guides the clinical performance of rapid diagnostic tests (RDT) in different uses. A prospective study was conducted in Porto Velho, Brazil, to investigate RDT performance in different specimen types as a function of the correlation between antigen concentration and viral load. The study included 214 close contacts with recent exposures to confirmed cases, aged 12 years and older and with various levels of vaccination. Antigen concentration was measured in nasopharyngeal swab (NPS), anterior nares swab (ANS), and saliva specimens. Reverse transcriptase (RT)-PCR was conducted on the NPS and saliva specimens, and two RDTs were conducted on ANS and one RDT on saliva. Antigen concentration correlated well with viral load when measured in the same specimen type but not across specimen types. Antigen levels were higher in symptomatic cases compared to asymptomatic/oligosymptomatic cases and lower in saliva compared to NPS and ANS samples. Discordant results between the RDTs conducted on ANS and the RT-PCR on NPS were resolved by antigen concentration values. The analytical limit-of-detection of RDTs can be used to predict the performance of the tests in populations for which the antigen concentration is known. The antigen dynamics across different sample types observed in SARS-CoV-2 disease progression support use of RDTs with nasal samples. Given lower antigen concentrations in saliva, rapid testing using saliva is expected to require improved RDT analytical sensitivity to achieve clinical sensitivity similar to rapid testing of nasal samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Viral Load , Prospective Studies , COVID-19/diagnosis , Serologic Tests , Saliva , Specimen Handling , Sensitivity and Specificity , Nasopharynx
3.
Pathogens ; 11(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145477

ABSTRACT

Low glucose-6-phosphate dehydrogenase enzyme (G6PD) activity is a key determinant of drug-induced haemolysis. More than 230 clinically relevant genetic variants have been described. We investigated the variation in G6PD activity within and between different genetic variants. In this systematic review, individual patient data from studies reporting G6PD activity measured by spectrophotometry and corresponding the G6PD genotype were pooled (PROSPERO: CRD42020207448). G6PD activity was converted into percent normal activity applying study-specific definitions of 100%. In total, 4320 individuals from 17 studies across 10 countries were included, where 1738 (40.2%) had one of the 24 confirmed G6PD mutations, and 61 observations (3.5%) were identified as outliers. The median activity of the hemi-/homozygotes with A-(c.202G>A/c.376A>G) was 29.0% (range: 1.7% to 76.6%), 10.2% (range: 0.0% to 32.5%) for Mahidol, 16.9% (range 3.3% to 21.3%) for Mediterranean, 9.0% (range: 2.9% to 23.2%) for Vanua Lava, and 7.5% (range: 0.0% to 18.3%) for Viangchan. The median activity in heterozygotes was 72.1% (range: 16.4% to 127.1%) for A-(c.202G>A/c.376A>G), 54.5% (range: 0.0% to 112.8%) for Mahidol, 37.9% (range: 20.7% to 80.5%) for Mediterranean, 53.8% (range: 10.9% to 82.5%) for Vanua Lava, and 52.3% (range: 4.8% to 78.6%) for Viangchan. A total of 99.5% of hemi/homozygotes with the Mahidol mutation and 100% of those with the Mediterranean, Vanua Lava, and Viangchan mutations had <30% activity. For A-(c.202G>A/c.376A>G), 55% of hemi/homozygotes had <30% activity. The G6PD activity for each variant spanned the current classification thresholds used to define clinically relevant categories of enzymatic deficiency.

4.
J Infect Dis ; 226(12): 2118-2128, 2022 12 13.
Article in English | MEDLINE | ID: mdl-35594905

ABSTRACT

BACKGROUND: Point-of-care and decentralized testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to inform public health responses. Performance evaluations in priority use cases such as contact tracing can highlight trade-offs in test selection and testing strategies. METHODS: A prospective diagnostic accuracy study was conducted among close contacts of coronavirus disease 2019 (COVID-19) cases in Brazil. Two anterior nares swabs (ANS), a nasopharyngeal swab (NPS), and saliva were collected at all visits. Vaccination history and symptoms were assessed. Household contacts were followed longitudinally. Three rapid antigen tests and 1 molecular method were evaluated for usability and performance against reference reverse-transcription polymerase chain reaction (RT-PCR) on nasopharyngeal swab specimens. RESULTS: Fifty index cases and 214 contacts (64 household) were enrolled. Sixty-five contacts were RT-PCR positive during ≥1 visit. Vaccination did not influence viral load. Gamma variants were most prevalent; Delta variants emerged increasingly during implementation. The overall sensitivity of evaluated tests ranged from 33% to 76%. Performance was higher among symptomatic cases and those with cycle threshold (Ct) values <34 and lower among oligosymptomatic or asymptomatic cases. Assuming a 24-hour time to results for RT-PCR, the cumulative sensitivity of an anterior nares swab rapid antigen test was >70% and almost 90% after 4 days. CONCLUSIONS: The near-immediate time to results for antigen tests significantly offsets lower analytical sensitivity in settings where RT-PCR results are delayed or unavailable.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Prospective Studies , Contact Tracing , Sensitivity and Specificity
5.
PLoS Negl Trop Dis ; 16(2): e0010174, 2022 02.
Article in English | MEDLINE | ID: mdl-35176015

ABSTRACT

BACKGROUND: The introduction of novel short course treatment regimens for the radical cure of Plasmodium vivax requires reliable point-of-care diagnosis that can identify glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. While deficient males can be identified using a qualitative diagnostic test, the genetic make-up of females requires a quantitative measurement. SD Biosensor (Republic of Korea) has developed a handheld quantitative G6PD diagnostic (STANDARD G6PD test), that has approximately 90% accuracy in field studies for identifying individuals with intermediate or severe deficiency. The device can only be considered for routine care if precision of the assay is high. METHODS AND FINDINGS: Commercial lyophilised controls (ACS Analytics, USA) with high, intermediate, and low G6PD activities were assessed 20 times on 10 Biosensor devices and compared to spectrophotometry (Pointe Scientific, USA). Each device was then dispatched to one of 10 different laboratories with a standard set of the controls. Each control was tested 40 times at each laboratory by a single user and compared to spectrophotometry results. When tested at one site, the mean coefficient of variation (CV) was 0.111, 0.172 and 0.260 for high, intermediate, and low controls across all devices respectively; combined G6PD Biosensor readings correlated well with spectrophotometry (rs = 0.859, p<0.001). When tested in different laboratories, correlation was lower (rs = 0.604, p<0.001) and G6PD activity determined by Biosensor for the low and intermediate controls overlapped. The use of lyophilised human blood samples rather than fresh blood may have affected these findings. Biosensor G6PD readings between sites did not differ significantly (p = 0.436), whereas spectrophotometry readings differed markedly between sites (p<0.001). CONCLUSIONS: Repeatability and inter-laboratory reproducibility of the Biosensor were good; though the device did not reliably discriminate between intermediate and low G6PD activities of the lyophilized specimens. Clinical studies are now required to assess the devices performance in practice.


Subject(s)
Biosensing Techniques/standards , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase/blood , Female , Freeze Drying , Glucosephosphate Dehydrogenase Deficiency/blood , Humans , Point-of-Care Testing/standards , Reproducibility of Results , Spectrophotometry
6.
PLoS One ; 16(9): e0257560, 2021.
Article in English | MEDLINE | ID: mdl-34543346

ABSTRACT

Certain clinical indications and treatments such as the use of rasburicase in cancer therapy and 8-aminoquinolines for Plasmodium vivax malaria treatment would benefit from a point-of-care test for glucose-6-phosphate dehydrogenase (G6PD) deficiency. Three studies were conducted to evaluate the performance of one such test: the STANDARD™ G6PD Test (SD BIOSENSOR, South Korea). First, biological interference on the test performance was evaluated in specimens with common blood disorders, including high white blood cell (WBC) counts. Second, the test precision on fingerstick specimens was evaluated against five individuals of each, deficient, intermediate, and normal G6PD activity status. Third, clinical performance of the test was evaluated at three point-of-care settings in the United States. The test performed equivalently to the reference assay in specimens with common blood disorders. High WBC count blood samples resulted in overestimation of G6PD activity in both the reference assay and the STANDARD G6PD Test. The STANDARD G6PD Test showed good precision on multiple fingerstick specimens from the same individual. The same G6PD threshold values (U/g Hb) were applied for a semiquantitative interpretation for fingerstick- and venous-derived results. The sensitivity/specificity values (95% confidence intervals) for the test for G6PD deficiency were 100 (92.3-100.0)/97 (95.2-98.2) and 100 (95.7-100.0)/97.4 (95.7-98.5) for venous and capillary specimens, respectively. The same values for females with intermediate (> 30% to ≤ 70%) G6PD activity were 94.1 (71.3-99.9)/88.2 (83.9-91.7) and 82.4 (56.6-96.2)/87.6(83.3-91.2) for venous and capillary specimens, respectively. The STANDARD G6PD Test enables point-of-care testing for G6PD deficiency.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase/blood , Point-of-Care Systems/standards , Adolescent , Adult , Aged , Blood Specimen Collection , Child , Child, Preschool , Female , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/standards , Glucosephosphate Dehydrogenase Deficiency/complications , Hematologic Diseases/complications , Hemoglobins/analysis , Humans , Leukocyte Count , Male , Middle Aged , Reagent Kits, Diagnostic , Reference Standards , Sensitivity and Specificity , Young Adult
7.
PLoS Negl Trop Dis ; 15(8): e0009649, 2021 08.
Article in English | MEDLINE | ID: mdl-34383774

ABSTRACT

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzyme deficiency, prevalent in many malaria-endemic countries. G6PD-deficient individuals are susceptible to hemolysis during oxidative stress, which can occur from exposure to certain medications, including 8-aminoquinolines used to treat Plasmodium vivax malaria. Accordingly, access to point-of-care (POC) G6PD testing in Brazil is critical for safe treatment of P. vivax malaria. METHODOLOGY/PRINCIPAL FINDINGS: This study evaluated the performance of the semi-quantitative, POC STANDARD G6PD Test (SD Biosensor, Republic of Korea). Participants were recruited at clinics and through an enriched sample in Manaus and Porto Velho, Brazil. G6PD and hemoglobin measurements were obtained from capillary samples at the POC using the STANDARD and HemoCue 201+ (HemoCue AB, Sweden) tests. A thick blood slide was prepared for malaria microscopy. At the laboratories, the STANDARD and HemoCue tests were repeated on venous samples and a quantitative spectrophotometric G6PD reference assay was performed (Pointe Scientific, Canton, MI). G6PD was also assessed by fluorescent spot test. In Manaus, a complete blood count was performed. Samples were analyzed from 1,736 participants. In comparison to spectrophotometry, the STANDARD G6PD Test performed equivalently in determining G6PD status in venous and capillary specimens under varied operating temperatures. Using the manufacturer-recommended reference value thresholds, the test's sensitivity at the <30% threshold on both specimen types was 100% (95% confidence interval [CI] venous 93.6%-100.0%; capillary 93.8%-100.0%). Specificity was 98.6% on venous specimens (95% CI 97.9%-99.1%) and 97.8% on capillary (95% CI 97.0%-98.5%). At the 70% threshold, the test's sensitivity was 96.9% on venous specimens (95% CI 83.8%-99.9%) and 94.3% on capillary (95% CI 80.8%-99.3%). Specificity was 96.5% (95% CI 95.0%-97.6%) and 92.3% (95% CI 90.3%-94.0%) on venous and capillary specimens, respectively. CONCLUSION/SIGNIFICANCE: The STANDARD G6PD Test is a promising tool to aid in POC detection of G6PD deficiency in Brazil. TRIAL REGISTRATION: This study was registered with ClinicalTrials.gov (identifier: NCT04033640).


Subject(s)
Biosensing Techniques , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase/blood , Point-of-Care Testing/standards , Adolescent , Adult , Aged , Aged, 80 and over , Aminoquinolines/therapeutic use , Antimalarials/therapeutic use , Brazil , Child , Child, Preschool , Cross-Sectional Studies , Female , Glucosephosphate Dehydrogenase Deficiency/blood , Hemolysis , Humans , Linear Models , Malaria, Vivax/complications , Malaria, Vivax/drug therapy , Male , Middle Aged , ROC Curve , Young Adult
8.
Malar J ; 20(1): 307, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34238299

ABSTRACT

BACKGROUND: Point-of-care glucose-6-phosphate dehydrogenase (G6PD) testing has the potential to make the use of radical treatment for vivax malaria safer and more effective. Widespread use of G6PD tests as part of malaria case management has been limited, in part due to due concerns regarding product usability, user training, and supervision. This study seeks to assess how well end users can understand the Standard™ G6PD Test (SD Biosensor, Suwon, South Korea) workflow, result output, and label after training. This will ultimately help inform test registration and introduction. METHODS: Potential G6PD test users who provide malaria case management at three sites in Brazil, Ethiopia, and India were trained on the use of the SD Biosensor Standard G6PD Test and assessed based on their ability to understand the test workflow and interpret results. The assessment was done through a questionnaire, designed to assess product usability against key technical product specifications and fulfill regulatory evidence requirements. Any participant who obtained 85% or above correct responses to the questionnaire was considered to adequately comprehend how to use and interpret the test. RESULTS: Forty-five participants, including malaria microscopists, laboratory staff, nurses, and community health workers took part in the study. Seventy-eight percent of all participants in the study (35/45) obtained passing scores on the assessment with minimal training. Responses to the multiple-choice questions indicate that most participants understood well the test intended use, safety claims, and warnings. The greatest source of error regarding the test was around the correct operating temperature. Most test results were also read and interpreted correctly, with the haemoglobin measurement being a more problematic output to interpret than the G6PD measurement. CONCLUSIONS: These data results show how a standardized tool can be used to assess a user's ability to run a point-of-care diagnostic and interpret results. When applied to the SD Biosensor Standard G6PD Test, this tool demonstrates that a range of users across multiple contexts can use the test and suggests improvements to the test instructions and training that can improve product usability, increase user comprehension, and ultimately contribute to more widespread effective use of point-of-care G6PD tests. TRIAL REGISTRATION: NCT04033640.


Subject(s)
Clinical Competence , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase/blood , Inservice Training , Malaria/diagnosis , Point-of-Care Testing , Brazil , Ethiopia , Glucosephosphate Dehydrogenase Deficiency/blood , Humans , India , Malaria/blood , Malaria/drug therapy , Product Labeling , Surveys and Questionnaires
9.
RSC Adv ; 11(19): 11192-11203, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-35423661

ABSTRACT

Deposition of oxidation-modified proteins during normal aging and oxidative stress are directly associated with systemic amyloidoses. Methionine (Met) is believed to be one of the most readily oxidisable amino acid residues of protein. Bovine beta-lactoglobulin (ß-lg), a model globular whey protein, has been presented as a subsequent paradigm for studies on protein aggregation and amyloid formation. Herein, we investigated the effect of t-butyl hydroperoxide (tBHP)-induced oxidation on structure, compactness and fibrillation propensity of ß-lg at physiological pH. Notably, whey protein modification, specifically Met residues, plays an important role in the dairy industry during milk processing and lowering nutritional value and ultimately affecting their technological properties. Several bio-physical studies revealed enhanced structural flexibility and aggregation propensity of oxidised ß-lg in a temperature dependent manner. A molecular docking study is used to predict possible interactions with tBHP and infers selective oxidation of methionine residues at 7, 24 and 107 positions. From our studies, it can be corroborated that specific orientations of Met residues directs the formation of a partially unfolded state susceptible to fibrillation with possible different cytotoxic effects. Our studies have greater implications in deciphering the underlying mechanism of different whey proteins encountering oxidative stress. Our findings are also important to elucidate the understanding of oxidation induced amyloid fibrillation of protein which may constitute a new route to pave the way for a modulatory role of oxidatively stressed proteins in neurological disorders.

10.
Am J Trop Med Hyg ; 103(2_Suppl): 82-89, 2020 08.
Article in English | MEDLINE | ID: mdl-32618252

ABSTRACT

Malaria burden in Zambia has significantly declined over the last decade because of improved coverage of several key malaria interventions (e.g., vector control, case management, bed net distributions, and enhanced surveillance/responses). Campaign-based mass drug administration (MDA) and focal MDA (fMDA) were assessed in a trial in Southern Province, Zambia, to identify its utility in elimination efforts. As part of the study, a longitudinal cohort was visited and tested (by PCR targeting the 18s rRNA and a Plasmodium falciparum-specific rapid diagnostic test [RDT] from SD Bioline) every month for the trial duration (18 months). Overall, there was high concordance (> 97%) between the PCR and RDT results, using the PCR as the gold standard. The RDTs had high specificity and negative predictive values (98.5% and 98.6%, respectively) but low sensitivity (53.0%) and a low positive predictive value (53.8%). There was evidence for persistent antigenemia affecting the low specificity of the RDT, while false-negative RDTs were associated with a lower parasite density than true positive RDTs. Plasmodium falciparum was the dominant species identified, with 98.3% of all positive samples containing P. falciparum. Of these, 97.5% were mono-infections and 0.8% coinfections with one other species. Plasmodium malariae was found in 1.4% of all positive samples (50% mono-infections and 50% coinfections with P. falciparum), whereas Plasmodium ovale was found in 1.1% of all positive samples (90% mono-infections and 10% coinfections with P. falciparum). Although MDA/fMDA appeared to reduce P. malariae prevalence, P. ovale prevalence appeared unchanged.


Subject(s)
Antimalarials/administration & dosage , Malaria, Falciparum/epidemiology , Malaria/epidemiology , Mass Drug Administration/methods , Plasmodium falciparum , Real-Time Polymerase Chain Reaction/methods , Antimalarials/therapeutic use , Artemisinins/administration & dosage , Artemisinins/therapeutic use , Drug Therapy, Combination/methods , Humans , Longitudinal Studies , Malaria/diagnosis , Malaria/drug therapy , Malaria/prevention & control , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Prevalence , Quinolines/administration & dosage , Quinolines/therapeutic use , Zambia/epidemiology
12.
PLoS Med ; 17(5): e1003084, 2020 05.
Article in English | MEDLINE | ID: mdl-32407380

ABSTRACT

BACKGROUND: The radical cure of Plasmodium vivax and P. ovale requires treatment with primaquine or tafenoquine to clear dormant liver stages. Either drug can induce haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, necessitating screening. The reference diagnostic method for G6PD activity is ultraviolet (UV) spectrophotometry; however, a universal G6PD activity threshold above which these drugs can be safely administered is not yet defined. Our study aimed to quantify assay-based variation in G6PD spectrophotometry and to explore the diagnostic implications of applying a universal threshold. METHODS AND FINDINGS: Individual-level data were pooled from studies that used G6PD spectrophotometry. Studies were identified via PubMed search (25 April 2018) and unpublished contributions from contacted authors (PROSPERO: CRD42019121414). Studies were excluded if they assessed only individuals with known haematological conditions, were family studies, or had insufficient details. Studies of malaria patients were included but analysed separately. Included studies were assessed for risk of bias using an adapted form of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Repeatability and intra- and interlaboratory variability in G6PD activity measurements were compared between studies and pooled across the dataset. A universal threshold for G6PD deficiency was derived, and its diagnostic performance was compared to site-specific thresholds. Study participants (n = 15,811) were aged between 0 and 86 years, and 44.4% (7,083) were women. Median (range) activity of G6PD normal (G6PDn) control samples was 10.0 U/g Hb (6.3-14.0) for the Trinity assay and 8.3 U/g Hb (6.8-15.6) for the Randox assay. G6PD activity distributions varied significantly between studies. For the 13 studies that used the Trinity assay, the adjusted male median (AMM; a standardised metric of 100% G6PD activity) varied from 5.7 to 12.6 U/g Hb (p < 0.001). Assay precision varied between laboratories, as assessed by variance in control measurements (from 0.1 to 1.5 U/g Hb; p < 0.001) and study-wise mean coefficient of variation (CV) of replicate measures (from 1.6% to 14.9%; p < 0.001). A universal threshold of 100% G6PD activity was defined as 9.4 U/g Hb, yielding diagnostic thresholds of 6.6 U/g Hb (70% activity) and 2.8 U/g Hb (30% activity). These thresholds diagnosed individuals with less than 30% G6PD activity with study-wise sensitivity from 89% (95% CI: 81%-94%) to 100% (95% CI: 96%-100%) and specificity from 96% (95% CI: 89%-99%) to 100% (100%-100%). However, when considering intermediate deficiency (<70% G6PD activity), sensitivity fell to a minimum of 64% (95% CI: 52%-75%) and specificity to 35% (95% CI: 24%-46%). Our ability to identify underlying factors associated with study-level heterogeneity was limited by the lack of availability of covariate data and diverse study contexts and methodologies. CONCLUSIONS: Our findings indicate that there is substantial variation in G6PD measurements by spectrophotometry between sites. This is likely due to variability in laboratory methods, with possible contribution of unmeasured population factors. While an assay-specific, universal quantitative threshold offers robust diagnosis at the 30% level, inter-study variability impedes performance of universal thresholds at the 70% level. Caution is advised in comparing findings based on absolute G6PD activity measurements across studies. Novel handheld quantitative G6PD diagnostics may allow greater standardisation in the future.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/metabolism , Glucosephosphate Dehydrogenase/metabolism , Spectrophotometry , Adolescent , Adult , Aged , Aged, 80 and over , Antimalarials/therapeutic use , Child , Child, Preschool , Female , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Humans , Infant , Infant, Newborn , Malaria/epidemiology , Male , Middle Aged , Young Adult
13.
Int J Biol Macromol ; 125: 596-604, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30528992

ABSTRACT

Silver nanoparticles (SNPs) have been increasingly used in medicines and biomaterials as a drug carriers and diagnostic or therapeutic material due to their smaller size, large surface area and cell penetration ability. Here we report the preparation of SNPs of diameter 10 ±â€¯3 nm by using silver nitrate and sodium borohydride and the interaction of synthesized SNPs with our model protein ß-lactoglobulin (ß-lg) in 10 mM phosphate buffer at pH 7.5 after thermal exposure at 75 °C. Heat exposed ß-lg forms amyloidal fibrillar aggregates whereas this protein aggregates adopt rod-like shape instead of fibrillar structure in presence of SNP under the same conditions. Size of the synthesized SNPs is confirmed by UV-Visible spectroscopy, SEM and TEM. Interactions and subsequent formation of molecular assembly of heat stressed ß-lg with SNP were investigated using Th-T assay and ANS binding assay, DLS, RLS, CD, FT-IR, SEM, TEM. Docking study parallely also support the experimental findings.


Subject(s)
Lactoglobulins/metabolism , Metal Nanoparticles/administration & dosage , Protein Aggregates/drug effects , Silver/administration & dosage , Amyloid/metabolism , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Polymorphism, Single Nucleotide/physiology
14.
Am J Trop Med Hyg ; 100(1): 213-221, 2019 01.
Article in English | MEDLINE | ID: mdl-30350771

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a common genetic blood condition, can result in kernicterus at birth, and later in life as severe hemolysis on exposure to certain infections, foods, and drugs. The unavailability of point-of-care tests for G6PD deficiency is a barrier to routine curative treatment of Plasmodium vivax malaria with 8-aminoquinolines, such as primaquine. Two quantitative reference tests (Trinity Biotech, Bray, Ireland and Pointe Scientific, Canton, MI; Cat No. G7583) and the point-of-care STANDARD™ G6PD test (SD Biosensor, Suwon, South Korea) were evaluated. The STANDARD G6PD test was evaluated at multiple temperatures, in anticoagulated venous and capillary samples, including 79 G6PD-deficient and 66 intermediate samples and across two laboratories, one in the United States and one in Thailand. The STANDARD test performed equivalently to a reference assay for its ability to diagnose G6PD deficiency (< 30% normal) with a sensitivity of 100% (0.95 confidence interval [CI]: 95.7-100) and specificity of 97% (0.95 CI: 94.5-98.5), and could reliably identify females with less than 70% normal G6PD activity with a sensitivity of 95.5% (0.95 CI: 89.7-98.5) and specificity of 97% (0.95 CI: 94.5-98.6). The STANDARD G6PD product represents an opportunity to diagnose G6PD deficiency equally for males and females in basic clinical laboratories in high- and low-resource settings. This quantitative point-of-care diagnostic test for G6PD deficiency can provide equal access to safe radical cure of P. vivax cases in high- and low-resource settings, for males and females and may support malaria elimination, in countries where P. vivax is endemic.


Subject(s)
Clinical Enzyme Tests/standards , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase/blood , Point-of-Care Testing/standards , Reagent Kits, Diagnostic/standards , Antimalarials/therapeutic use , Clinical Enzyme Tests/methods , Female , Glucosephosphate Dehydrogenase Deficiency/blood , Humans , Malaria, Vivax/complications , Malaria, Vivax/drug therapy , Male , Sensitivity and Specificity , Thailand , United States , Young Adult
15.
PLoS One ; 13(5): e0196716, 2018.
Article in English | MEDLINE | ID: mdl-29738562

ABSTRACT

INTRODUCTION: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the human population affecting an estimated 8% of the world population, especially those living in areas of past and present malaria endemicity. Decreased G6PD enzymatic activity is associated with drug-induced hemolysis and increased risk of severe neonatal hyperbilirubinemia leading to brain damage. The G6PD gene is on the X chromosome therefore mutations cause enzymatic deficiency in hemizygote males and homozygote females while the majority of heterozygous females have an intermediate activity (between 30-80% of normal) with a large distribution into the range of deficiency and normality. Current G6PD qualitative tests are unable to diagnose G6PD intermediate activities which could hinder wide use of 8-aminoquinolines for Plasmodium vivax elimination. The aim of the study was to assess the diagnostic performances of the new Carestart G6PD quantitative biosensor. METHODS: A total of 150 samples of venous blood with G6PD deficient, intermediate and normal phenotypes were collected among healthy volunteers living along the north-western Thailand-Myanmar border. Samples were analyzed by complete blood count, by gold standard spectrophotometric assay using Trinity kits and by the latest model of Carestart G6PD biosensor which analyzes both G6PD and hemoglobin. RESULTS: Bland-Altman comparison of the CareStart normalized G6PD values to that of the gold standard assay showed a strong bias in values resulting in poor area under-the-curve values for both 30% and 80% thresholds. Performing a receiver operator curve identified threshold values for the CareStart product equivalent to the 30% and 80% gold standard values with good sensitivity and specificity values, 100% and 92% (for 30% G6PD activity) and 92% and 94% (for 80% activity) respectively. CONCLUSION: The Carestart G6PD biosensor represents a significant improvement for quantitative diagnosis of G6PD deficiency over previous versions. Further improvements and validation studies are required to assess its utility for informing radical cure decisions in malaria endemic settings.


Subject(s)
Biosensing Techniques , Clinical Enzyme Tests/instrumentation , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase/blood , Point-of-Care Systems , Adult , Aminoquinolines/adverse effects , Aminoquinolines/therapeutic use , Antimalarials/adverse effects , Antimalarials/therapeutic use , Area Under Curve , Endemic Diseases , Ethnicity/genetics , Female , Genotype , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/ethnology , Glucosephosphate Dehydrogenase Deficiency/genetics , Hemoglobinometry , Humans , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Male , Methemoglobinemia/chemically induced , Methemoglobinemia/genetics , Methemoglobinemia/prevention & control , Myanmar/epidemiology , Pregnancy , Pregnancy Complications, Hematologic/diagnosis , Pregnancy Complications, Hematologic/epidemiology , Primaquine/adverse effects , Primaquine/therapeutic use , ROC Curve , Spectrophotometry, Ultraviolet
16.
Int J Neonatal Screen ; 4(4): 34, 2018.
Article in English | MEDLINE | ID: mdl-31709308

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked genetic disorder, is associated with increased risk of jaundice and kernicterus at birth. G6PD deficiency can manifest later in life as severe hemolysis, when the individual is exposed to oxidative agents that range from foods such as fava beans, to diseases such as typhoid, to medications such as dapsone, to the curative drugs for Plasmodium (P.) vivax malaria, primaquine and tafenoquine. While routine testing at birth for G6PD deficiency is recommended by the World Health Organization for populations with greater than 5% prevalence of G6PD deficiency and to inform P. vivax case management using primaquine, testing coverage is extremely low. Test coverage is low due to the need to prioritize newborn interventions and the complexity of currently available G6PD tests, especially those used to inform malaria case management. More affordable, accurate, point-of-care (POC) tests for G6PD deficiency are emerging that create an opportunity to extend testing to populations that do not have access to high throughput screening services. Some of these tests are quantitative, which provides an opportunity to address the gender disparity created by the currently available POC qualitative tests that misclassify females with intermediate G6PD activity as normal. In populations where the epidemiology for G6PD deficiency and P. vivax overlap, screening for G6PD deficiency at birth to inform care of the newborn can also be used to inform malaria case management over their lifetime.

17.
Eur J Haematol ; 100(3): 294-303, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29240263

ABSTRACT

BACKGROUND: Medicines that exert oxidative pressure on red blood cells (RBC) can cause severe hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Due to X-chromosome inactivation, females heterozygous for G6PD with 1 allele encoding a G6PD-deficient protein and the other a normal protein produce 2 RBC populations each expressing exclusively 1 allele. The G6PD mosaic is not captured with routine G6PD tests. METHODS: An open-source software tool for G6PD cytofluorometric data interpretation is described. The tool interprets data in terms of % bright RBC, or cells with normal G6PD activity in specimens collected from 2 geographically and ethnically distinct populations, an African American cohort (USA) and a Karen and Burman ethnic cohort (Thailand) comprising 242 specimens including 89 heterozygous females. RESULTS: The tool allowed comparison of data across 2 laboratories and both populations. Hemizygous normal or deficient males and homozygous normal or deficient females cluster at narrow % bright cells with mean values of 96%, or 6% (males) and 97%, or 2% (females), respectively. Heterozygous females show a distribution of 10-85% bright cells and a mean of 50%. The distributions are associated with the severity of the G6PD mutation. CONCLUSIONS: Consistent cytofluorometric G6PD analysis facilitates interlaboratory comparison of cellular G6PD profiles and contributes to understanding primaquine-associated hemolytic risk.


Subject(s)
Antimalarials/adverse effects , Erythrocytes/drug effects , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/genetics , Mosaicism , Mutation , Primaquine/adverse effects , Black or African American , Alleles , Asian People , Case-Control Studies , Contraindications, Drug , Erythrocytes/enzymology , Erythrocytes/pathology , Female , Flow Cytometry/methods , Gene Expression Regulation , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/enzymology , Glucosephosphate Dehydrogenase Deficiency/ethnology , Glucosephosphate Dehydrogenase Deficiency/pathology , Hemizygote , Heterozygote , Humans , Male , Severity of Illness Index , Software , Thailand , United States
18.
Malar J ; 16(1): 242, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28595603

ABSTRACT

BACKGROUND: Since 2005, Ethiopia has aggressively scaled up malaria prevention and case management. As a result, the number of malaria cases and deaths has significantly declined. In order to track progress towards the elimination of malaria in Amhara Region, coverage of malaria control tools and current malaria transmission need to be documented. METHODS: A cross-sectional household survey oversampling children under 5 years of age was conducted during the dry season in 2013. A bivalent rapid diagnostic test (RDT) detecting both Plasmodium falciparum and Plasmodium vivax and serology assays using merozoite antigens from both these species were used to assess the prevalence of malaria infections and exposure to malaria parasites in 16 woredas (districts) in Amhara Region. RESULTS: 7878 participants were included, with a mean age of 16.8 years (range 0.5-102.8 years) and 42.0% being children under 5 years of age. The age-adjusted RDT-positivity for P. falciparum and P. vivax infection was 1.5 and 0.4%, respectively, of which 0.05% presented as co-infections. Overall age-adjusted seroprevalence was 30.0% for P. falciparum, 21.8% for P. vivax, and seroprevalence for any malaria species was 39.4%. The prevalence of RDT-positive infections varied by woreda, ranging from 0.0 to 8.3% and by altitude with rates of 3.2, 0.7, and 0.4% at under 2000, 2000-2500, and >2500 m, respectively. Serological analysis showed heterogeneity in transmission intensity by area and altitude and evidence for a change in the force of infection in the mid-2000s. CONCLUSIONS: Current and historic malaria transmission across Amhara Region show substantial variation by age and altitude with some settings showing very low or near-zero transmission. Plasmodium vivax infections appear to be lower but relatively more stable across geography and altitude, while P. falciparum is the dominant infection in the higher transmission, low-altitude areas. Age-dependent seroprevalence analyses indicates a drop in transmission occurred in the mid-2000s, coinciding with malaria control scale-up efforts. As malaria parasitaemia rates get very low with elimination efforts, serological evaluation may help track progress to elimination.


Subject(s)
Malaria/epidemiology , Plasmodium/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, Protozoan/blood , Child , Child, Preschool , Coinfection/epidemiology , Coinfection/parasitology , Cross-Sectional Studies , Ethiopia/epidemiology , Female , Humans , Infant , Malaria/parasitology , Male , Merozoites/isolation & purification , Middle Aged , Parasitemia/epidemiology , Parasitemia/parasitology , Prevalence , Young Adult
19.
PLoS One ; 12(5): e0177885, 2017.
Article in English | MEDLINE | ID: mdl-28552983

ABSTRACT

BACKGROUND: A large gap for the support of point-of-care testing is the availability of reagents to support quality control (QC) of diagnostic assays along the supply chain from the manufacturer to the end user. While reagents and systems exist to support QC of laboratory screening tests for glucose-6-phosphate dehydrogenase (G6PD) deficiency, they are not configured appropriately to support point-of-care testing. The feasibility of using lyophilized recombinant human G6PD as a QC reagent in novel point-of-care tests for G6PD deficiency is demonstrated. METHODS: Human recombinant G6PD (r-G6PD) was expressed in Escherichia coli and purified. Aliquots were stored at -80°C. Prior to lyophilization, aliquots were thawed, and three concentrations of r-G6PD (representing normal, intermediate, and deficient clinical G6PD levels) were prepared and mixed with a protective formulation, which protects the enzyme activity against degradation from denaturation during the lyophilization process. Following lyophilization, individual single-use tubes of lyophilized r-G6PD were placed in individual packs with desiccants and stored at five temperatures for one year. An enzyme assay for G6PD activity was used to ascertain the stability of r-G6PD activity while stored at different temperatures. RESULTS: Lyophilized r-G6PD is stable and can be used as a control indicator. Results presented here show that G6PD activity is stable for at least 365 days when stored at -80°C, 4°C, 30°C, and 45°C. When stored at 55°C, enzyme activity was found to be stable only through day 28. CONCLUSIONS: Lyophilized r-G6PD enzyme is stable and can be used as a control for point-of-care tests for G6PD deficiency.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase/metabolism , Point-of-Care Systems , Quality Control , Escherichia coli/genetics , Freeze Drying , Glucosephosphate Dehydrogenase/genetics , Humans , Recombinant Proteins/metabolism
20.
Int J Biol Macromol ; 84: 121-34, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26657584

ABSTRACT

Many proteins form ordered irreversible aggregates called amyloid fibrils which are responsible for several neurodegenerative diseases. ß-lactoglobulin (ß-lg), an important globular milk protein, self-assembles to form amyloid-like fibrils on heating at low pH. The present study investigated the effects of two commonly used organic solvents acetonitrile (MeCN) and antimicrobial preservative benzyl alcohol (BA) on the conformation and self-assembly of ß-lg at ambient condition. Both MeCN and BA induced a concentration-dependent conformational change showing exposure of hydrophobic patches, loss of tertiary structure and higher α-helical structure at moderate concentrations. In the presence of 50-80% (v/v) MeCN and 1.5-3% (v/v) BA further structural transitions from α-helical to non-native ß-sheet structure were observed with a molten globule-like intermediate at 70% MeCN. These non-native ß-sheet structures have high tendency to form aggregates. The formation of ß-lg self-assembly was confirmed by Thioflavin T studies, Congo red assay, Rayleigh scattering and dynamic light scattering analysis. Transmission electron microscopy studies showed amyloid fibril formation in both MeCN and BA. Our results showed that BA enhances the unfolding and self-assembly of ß-lg at much lower concentration than MeCN. Thus solvent composition forces the protein to achieve the non-native structures which are responsible for protein aggregation.


Subject(s)
Lactoglobulins/chemistry , Protein Aggregation, Pathological , Protein Conformation , Solvents/chemistry , Animals , Cattle , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...