Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Nat Microbiol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997520

ABSTRACT

Arthropod-borne pathogens are responsible for hundreds of millions of infections in humans each year. The blacklegged tick, Ixodes scapularis, is the predominant arthropod vector in the United States and is responsible for transmitting several human pathogens, including the Lyme disease spirochete Borrelia burgdorferi and the obligate intracellular rickettsial bacterium Anaplasma phagocytophilum, which causes human granulocytic anaplasmosis. However, tick metabolic response to microbes and whether metabolite allocation occurs upon infection remain unknown. Here we investigated metabolic reprogramming in the tick ectoparasite I. scapularis and determined that the rickettsial bacterium A. phagocytophilum and the spirochete B. burgdorferi induced glycolysis in tick cells. Surprisingly, the endosymbiont Rickettsia buchneri had a minimal effect on bioenergetics. An unbiased metabolomics approach following A. phagocytophilum infection of tick cells showed alterations in carbohydrate, lipid, nucleotide and protein metabolism, including elevated levels of the pleiotropic metabolite ß-aminoisobutyric acid. We manipulated the expression of genes associated with ß-aminoisobutyric acid metabolism in I. scapularis, resulting in feeding impairment, diminished survival and reduced bacterial acquisition post haematophagy. Collectively, we discovered that metabolic reprogramming affects interspecies relationships and fitness in the clinically relevant tick I. scapularis.

2.
Cell ; 187(15): 4113-4127.e13, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38876107

ABSTRACT

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.


Subject(s)
Host-Pathogen Interactions , Humans , Animals , Lyme Disease/microbiology , Vector Borne Diseases , Host Microbial Interactions , Borrelia burgdorferi/pathogenicity , Borrelia burgdorferi/metabolism
3.
Nat Commun ; 15(1): 2117, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459063

ABSTRACT

Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here we use and develop advanced techniques to describe immune cells (hemocytes) from the clinically relevant tick Ixodes scapularis at a single-cell resolution. We observe molecular alterations in hemocytes upon feeding and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We reveal hemocyte clusters exhibiting defined signatures related to immunity, metabolism, and proliferation. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, two I. scapularis hemocyte markers, impacting blood-feeding, molting behavior, and bacterial acquisition. Mechanistically, astakine alters hemocyte proliferation, whereas hemocytin affects the c-Jun N-terminal kinase (JNK) signaling pathway in I. scapularis. Altogether, we discover a role for tick hemocytes in immunophysiology and provide a valuable resource for comparative biology in arthropods.


Subject(s)
Anaplasma phagocytophilum , Arthropods , Borrelia burgdorferi , Ixodes , Lyme Disease , Animals , Hemocytes , Ixodes/microbiology , Borrelia burgdorferi/physiology
4.
Vaccines (Basel) ; 12(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38250891

ABSTRACT

Lyme disease (LD) is the most common tick-borne illness in the United States (U.S.), Europe, and Asia. Borrelia burgdorferi, a spirochete bacterium transmitted by the tick vector Ixodes scapularis, causes LD in the U.S. If untreated, Lyme arthritis, heart block, and meningitis can occur. Given the absence of a human Lyme disease vaccine, we developed a vaccine using the rabies virus (RABV) vaccine vector BNSP333 and an outer surface borrelial protein, BBI39. BBI39 was previously utilized as a recombinant protein vaccine and was protective in challenge experiments; therefore, we decided to utilize this protective antigen in a rabies virus-vectored vaccine against Borrelia burgdorferi. To incorporate BBI39 into the RABV virion, we generated a chimeric BBI39 antigen, BBI39RVG, by fusing BBI39 with the final amino acids of the RABV glycoprotein by molecular cloning and viral recovery with reverse transcription genetics. Here, we have demonstrated that the BBI39RVG antigen was incorporated into the RABV virion via immunofluorescence and Western blot analysis. Mice vaccinated with our BPL inactivated RABV-BBI39RVG (BNSP333-BBI39RVG) vaccine induced high amounts of BBI39-specific antibodies, which were maintained long-term, up to eight months post-vaccination. The BBI39 antibodies neutralized Borrelia in vaccinated mice when challenged with Borrelia burgdorferi by either syringe injection or infected ticks and they reduced the Lyme disease pathology of arthritis in infected mouse joints. Overall, the RABV-based LD vaccine induced more and longer-term antibodies compared to the recombinant protein vaccine. This resulted in lower borrelial RNA in RABV-based vaccinated mice compared to recombinant protein vaccinated mice. The results of this study indicate the successful use of BBI39 as a vaccine antigen and RABV as a vaccine vector for LD.

5.
Article in English | WPRIM (Western Pacific) | ID: wpr-820048

ABSTRACT

OBJECTIVE@#To assess the prevalence of Leptospira detected in wildlife and domesticated animals in Jiangxi Province, China, in.@*METHODS@#Urine samples from 28 buffaloes and kidney samples from 50 pigs, 50 dogs and 38 rats were collected from Fuliang and Shangrao County, Jiangxi Province, China, in October 2009. Polymerase chain reaction(PCR)and culture analyses were used to detect Leptospira. The cultured isolates were typed using the microscopic agglutination test(MAT).@*RESULTS@#The results showed that rats potentially serve as the main reservoir of leptospiral infection, followed by dogs. Although 16% of rats (6/38) were positive using culture analysis, PCR analysis using the diagnostic primers G1/G2 and B64I/B64II or lipL32 showed identification as 50% and 24%, respectively, of the rat samples as positive for the presence of leptospiral DNA.@*CONCLUSIONS@#PCR-based detection of leptospiral DNA in infected kidney tissues of reservoirs is more efficient when using G1/G2 primers than lipL32 primers. However, the latter primers have a potential application for detection in urine samples. The alarmingly high prevalence of leptospiral DNA in the wild rat population near human habitation underscores the utility of routine Leptospira surveillance, preferably using PCR methods, which are more sensitive than traditional culture-based methods.


Subject(s)
Animals , Dogs , Rats , Agglutination Tests , Animals, Domestic , Microbiology , Urine , Buffaloes , Urine , China , DNA, Bacterial , Disease Reservoirs , Kidney , Microbiology , Leptospira , Genetics , Polymerase Chain Reaction , Reproducibility of Results , Swine , Urine , Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL