Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Neuroinformatics ; 22(2): 177-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446357

ABSTRACT

Large-scale diffusion MRI tractography remains a significant challenge. Users must orchestrate a complex sequence of instructions that requires many software packages with complex dependencies and high computational costs. We developed MaPPeRTrac, an edge-centric tractography pipeline that simplifies and accelerates this process in a wide range of high-performance computing (HPC) environments. It fully automates either probabilistic or deterministic tractography, starting from a subject's magnetic resonance imaging (MRI) data, including structural and diffusion MRI images, to the edge density image (EDI) of their structural connectomes. Dependencies are containerized with Singularity (now called Apptainer) and decoupled from code to enable rapid prototyping and modification. Data derivatives are organized with the Brain Imaging Data Structure (BIDS) to ensure that they are findable, accessible, interoperable, and reusable following FAIR principles. The pipeline takes full advantage of HPC resources using the Parsl parallel programming framework, resulting in the creation of connectome datasets of unprecedented size. MaPPeRTrac is publicly available and tested on commercial and scientific hardware, so it can accelerate brain connectome research for a broader user community. MaPPeRTrac is available at: https://github.com/LLNL/mappertrac .


Subject(s)
Connectome , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Connectome/methods
3.
Article in English | MEDLINE | ID: mdl-36152948

ABSTRACT

BACKGROUND: Adult patients with mild traumatic brain injury (mTBI) exhibit distinct phenotypes of emotional and cognitive functioning identified by latent profile analysis of clinical neuropsychological assessments. When discerned early after injury, these latent clinical profiles have been found to improve prediction of long-term outcomes from mTBI. The present study hypothesized that white matter (WM) microstructure is better preserved in an emotionally resilient mTBI phenotype compared with a neuropsychiatrically distressed mTBI phenotype. METHODS: The present study used diffusion magnetic resonance imaging to investigate and compare WM microstructure in major association, projection, and commissural tracts between the two phenotypes and over time. Diffusion magnetic resonance images from 172 patients with mTBI were analyzed to compute individual diffusion tensor imaging maps at 2 weeks and 6 months after injury. RESULTS: By comparing the diffusion tensor imaging parameters between the two phenotypes at global, regional, and voxel levels, emotionally resilient patients were shown to have higher axial diffusivity compared with neuropsychiatrically distressed patients early after mTBI. Longitudinal analysis revealed greater compromise of WM microstructure in neuropsychiatrically distressed patients, with greater decrease of global axial diffusivity and more widespread decrease of regional axial diffusivity during the first 6 months after injury compared with emotionally resilient patients. CONCLUSIONS: These results provide neuroimaging evidence of WM microstructural differences underpinning mTBI phenotypes identified from neuropsychological assessments and show differing longitudinal trajectories of these biological effects. These findings suggest that diffusion magnetic resonance imaging can provide short- and long-term imaging biomarkers of resilience.

4.
Front Neuroinform ; 16: 752471, 2022.
Article in English | MEDLINE | ID: mdl-35651721

ABSTRACT

The anatomic validity of structural connectomes remains a significant uncertainty in neuroimaging. Edge-centric tractography reconstructs streamlines in bundles between each pair of cortical or subcortical regions. Although edge bundles provides a stronger anatomic embedding than traditional connectomes, calculating them for each region-pair requires exponentially greater computation. We observe that major speedup can be achieved by reducing the number of streamlines used by probabilistic tractography algorithms. To ensure this does not degrade connectome quality, we calculate the identifiability of edge-centric connectomes between test and re-test sessions as a proxy for information content. We find that running PROBTRACKX2 with as few as 1 streamline per voxel per region-pair has no significant impact on identifiability. Variation in identifiability caused by streamline count is overshadowed by variation due to subject demographics. This finding even holds true in an entirely different tractography algorithm using MRTrix. Incidentally, we observe that Jaccard similarity is more effective than Pearson correlation in calculating identifiability for our subject population.

5.
J Neurotrauma ; 39(19-20): 1318-1328, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35579949

ABSTRACT

Diffusion tensor imaging (DTI) literature on single-center studies contains conflicting results regarding acute effects of mild traumatic brain injury (mTBI) on white matter (WM) microstructure and the prognostic significance. This larger-scale multi-center DTI study aimed to determine how acute mTBI affects WM microstructure over time and how early WM changes affect long-term outcome. From Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI), a cohort study at 11 United States level 1 trauma centers, a total of 391 patients with acute mTBI ages 17 to 60 years were included and studied at two weeks and six months post-injury. Demographically matched friends or family of the participants were the control group (n = 148). Axial diffusivity (AD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were the measures of WM microstructure. The primary outcome was the Glasgow Outcome Scale Extended (GOSE) score of injury-related functional limitations across broad life domains at six months post-injury. The AD, MD, and RD were higher and FA was lower in mTBI versus friend control (FC) at both two weeks and six months post-injury throughout most major WM tracts of the cerebral hemispheres. In the mTBI group, AD and, to a lesser extent, MD decreased in WM from two weeks to six months post-injury. At two weeks post-injury, global WM AD and MD were both independently associated with six-month incomplete recovery (GOSE <8 vs = 8) even after accounting for demographic, clinical, and other imaging factors. DTI provides reliable imaging biomarkers of dynamic WM microstructural changes after mTBI that have utility for patient selection and treatment response in clinical trials. Continued technological advances in the sensitivity, specificity, and precision of diffusion magnetic resonance imaging hold promise for routine clinical application in mTBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , White Matter , Adolescent , Adult , Brain/pathology , Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Cohort Studies , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
6.
Front Neurol ; 11: 548220, 2020.
Article in English | MEDLINE | ID: mdl-33262738

ABSTRACT

Injuries and illnesses can alter the normal bilateral symmetry of the brain, and determining the extent of this disruption may be useful in characterizing the pathology. One way of quantifying brain symmetry is in terms of bilateral correlation of diffusion tensor metrics between homologous white matter tracts. With this approach, we hypothesized that the brains of patients with a concussion are more asymmetrical than those of healthy individuals without a history of a concussion. We scanned the brains of 35 normal individuals and 15 emergency department patients with a recent concussion. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were determined for regions of interest (ROI) defined by a standard white-matter atlas that included 21 bilateral ROIs. For each ROI pair, bilateral correlation coefficients were calculated and compared between the two subject groups. A symmetry index, defined as the ratio between the difference and the sum of bilateral measures, was also calculated for each ROI pair and compared between the groups. We found that in normal subjects, the extent of symmetry varied among regions and individuals, and at least subtle forms of structural lateralization were common across regions. In patients, higher asymmetry was found overall as well as in the corticospinal tract specifically. Results indicate that a concussion can manifest in brain asymmetry that deviates from a normal state. The clinical utility of characterizing post-concussion pathology as abnormal brain asymmetry merits further exploration.

7.
Pediatr Radiol ; 50(11): 1594-1601, 2020 10.
Article in English | MEDLINE | ID: mdl-32607611

ABSTRACT

BACKGROUND: Although acute neurologic impairment might be transient, other long-term effects can be observed with mild traumatic brain injury. However, when pediatric patients with mild traumatic brain injury present for medical care, conventional imaging with CT and MR imaging often does not reveal abnormalities. OBJECTIVE: To determine whether edge density imaging can separate pediatric mild traumatic brain injury from typically developing controls. MATERIALS AND METHODS: Subjects were recruited as part of the "Therapeutic Resources for Attention Improvement using Neuroimaging in Traumatic Brain Injury" (TRAIN-TBI) study. We included 24 adolescents (χ=14.1 years of age, σ=1.6 years, range 10-16 years), 14 with mild traumatic brain injury (TBI) and 10 typically developing controls. Neurocognitive assessments included the pediatric version of the California Verbal Learning Test (CVLT) and the Attention Network Task (ANT). Diffusion MR imaging was acquired on a 3-tesla (T) scanner. Edge density images were computed utilizing fiber tractography. Principal component analysis (PCA) and support vector machines (SVM) were used in an exploratory analysis to separate mild TBI and control groups. The diagnostic accuracy of edge density imaging, neurocognitive tests, and fractional anisotropy (FA) from diffusion tensor imaging (DTI) was computed with two-sample t-tests and receiver operating characteristic (ROC) metrics. RESULTS: Support vector machine-principal component analysis of edge density imaging maps identified three white matter regions distinguishing pediatric mild TBI from controls. The bilateral tapetum, sagittal stratum, and callosal splenium identified mild TBI subjects with sensitivity of 79% and specificity of 100%. Accuracy from the area under the ROC curve (AUC) was 94%. Neurocognitive testing provided an AUC of 61% (CVLT) and 71% (ANT). Fractional anisotropy yielded an AUC of 48%. CONCLUSION: In this proof-of-concept study, we show that edge density imaging is a new form of connectome mapping that provides better diagnostic delineation between pediatric mild TBI and healthy controls than DTI or neurocognitive assessments of memory or attention.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Connectome , Neuroimaging/methods , Adolescent , Anisotropy , Case-Control Studies , Child , Diffusion Magnetic Resonance Imaging , Female , Humans , Male , Mental Status and Dementia Tests , Principal Component Analysis , Proof of Concept Study , Prospective Studies , Severity of Illness Index , Support Vector Machine , Tomography, X-Ray Computed
8.
Front Psychol ; 11: 618436, 2020.
Article in English | MEDLINE | ID: mdl-33613368

ABSTRACT

Sensory processing dysfunction (SPD) is characterized by a behaviorally observed difference in the response to sensory information from the environment. While the cerebellum is involved in normal sensory processing, it has not yet been examined in SPD. Diffusion tensor imaging scans of children with SPD (n = 42) and typically developing controls (TDC; n = 39) were compared for fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) across the following cerebellar tracts: the middle cerebellar peduncles (MCP), superior cerebellar peduncles (SCP), and cerebral peduncles (CP). Compared to TDC, children with SPD show reduced microstructural integrity of the SCP and MCP, characterized by reduced FA and increased MD and RD, which correlates with abnormal auditory behavior, multisensory integration, and attention, but not tactile behavior or direct measures of auditory discrimination. In contradistinction, decreased CP microstructural integrity in SPD correlates with abnormal tactile and auditory behavior and direct measures of auditory discrimination, but not multisensory integration or attention. Hence, altered cerebellar white matter organization is associated with complex sensory behavior and attention in SPD, which prompts further consideration of diagnostic measures and treatments to better serve affected individuals.

9.
Front Neurol ; 10: 518, 2019.
Article in English | MEDLINE | ID: mdl-31156545

ABSTRACT

Concussion, or mild traumatic brain injury (mTBI), is a major public health concern, linked with persistent post-concussive syndrome, and chronic traumatic encephalopathy. At present, standard clinical imaging fails to reliably detect traumatic axonal injury associated with concussion and post-concussive symptoms. Diffusion tensor imaging (DTI) is an MR imaging technique that is sensitive to changes in white matter microstructure. Prior studies using DTI did not jointly investigate white matter microstructure in athletes, a population at high risk for concussive and subconcussive head traumas, with those in typical emergency room (ER) patients. In this study, we determine DTI scalar metrics in both ER patients and scholastic athletes who suffered concussions and compared them to those in age-matched healthy controls. In the early subacute post-concussion period, athletes demonstrated an elevated rate of regional decreases in axial diffusivity (AD) compared to controls. These regional decreases of AD were especially pronounced in the cerebellar peduncles, and were more frequent in athletes compared to the ER patient sample. The group differences may indicate differences in the mechanisms of the concussive impacts as well as possible compound effects of cumulative subconcussive impacts in athletes. The prevalence of white matter abnormality in cerebellar tracts lends credence to the hypothesis that post-concussive symptoms are caused by shearing of axons within an attention network mediated by the cerebellum, and warrant further study of the correlation between cerebellar DTI findings and clinical, neurocognitive, oculomotor, and vestibular outcomes in mTBI patients.

10.
Front Integr Neurosci ; 13: 10, 2019.
Article in English | MEDLINE | ID: mdl-30983979

ABSTRACT

Sensory over-responsivity (SOR) commonly involves auditory and/or tactile domains, and can affect children with or without additional neurodevelopmental challenges. In this study, we examined white matter microstructural and connectome correlates of auditory over-responsivity (AOR), analyzing prospectively collected data from 39 boys, aged 8-12 years. In addition to conventional diffusion tensor imaging (DTI) maps - including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD); we used DTI and high-resolution T1 scans to develop connectome Edge Density (ED) maps. The tract-based spatial statistics was used for voxel-wise comparison of diffusion and ED maps. Then, stepwise penalized logistic regression was applied to identify independent variable (s) predicting AOR, as potential imaging biomarker (s) for AOR. Finally, we compared different combinations of machine learning algorithms (i.e., naïve Bayes, random forest, and support vector machine (SVM) and tract-based DTI/connectome metrics for classification of children with AOR. In direct sensory phenotype assessment, 15 (out of 39) boys exhibited AOR (with or without neurodevelopmental concerns). Voxel-wise analysis demonstrates extensive impairment of white matter microstructural integrity in children with AOR on DTI maps - evidenced by lower FA and higher MD and RD; moreover, there was lower connectome ED in anterior-superior corona radiata, genu and body of corpus callosum. In stepwise logistic regression, the average FA of left superior longitudinal fasciculus (SLF) was the single independent variable distinguishing children with AOR (p = 0.007). Subsequently, the left SLF average FA yielded an area under the curve of 0.756 in receiver operating characteristic analysis for prediction of AOR (p = 0.008) as a region-of-interest (ROI)-based imaging biomarker. In comparative study of different combinations of machine-learning models and DTI/ED metrics, random forest algorithms using ED had higher accuracy for AOR classification. Our results demonstrate extensive white matter microstructural impairment in children with AOR, with specifically lower connectomic ED in anterior-superior tracts and associated commissural pathways. Also, average FA of left SLF can be applied as ROI-based imaging biomarker for prediction of SOR. Finally, machine-learning models can provide accurate and objective image-based classifiers for identification of children with AOR based on white matter tracts connectome ED.

11.
Neuroimage Clin ; 23: 101831, 2019.
Article in English | MEDLINE | ID: mdl-31035231

ABSTRACT

The "sensory processing disorder" (SPD) refers to brain's inability to organize sensory input for appropriate use. In this study, we determined the diffusion tensor imaging (DTI) microstructural and connectivity correlates of SPD, and apply machine learning algorithms for identification of children with SPD based on DTI/tractography metrics. A total of 44 children with SPD and 41 typically developing children (TDC) were prospectively recruited and scanned. In addition to fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD), we applied probabilistic tractography to generate edge density (ED) and track density (TD) from DTI maps. For identification of children with SPD, accurate classification rates from a combination of DTI microstructural (FA, MD, AD, and RD), connectivity (TD) and connectomic (ED) metrics with different machine learning algorithms - including naïve Bayes, random forest, support vector machine, and neural networks - were determined. In voxel-wise analysis, children with SPD had lower FA, ED, and TD but higher MD and RD compared to TDC - predominantly in posterior white matter tracts including posterior corona radiata, posterior thalamic radiation, and posterior body and splenium of corpus callosum. In stepwise penalized logistic regression, the only independent variable distinguishing children with SPD from TDC was the average TD in the splenium (p < 0.001). Among different combinations of machine learning algorithms and DTI/connectivity metrics, random forest models using tract-based TD yielded the highest accuracy in classification of SPD - 77.5% accuracy, 73.8% sensitivity, and 81.6% specificity. Our findings demonstrate impaired microstructural and connectivity/connectomic integrity in children with SPD, predominantly in posterior white matter tracts, and with reduced TD of the splenium of corpus callosum as the most distinctive pattern. Applying machine learning algorithms, these connectivity metrics can be used to devise novel imaging biomarkers for neurodevelopmental disorders.


Subject(s)
Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging/methods , Machine Learning , Nerve Net/diagnostic imaging , Sensation Disorders/diagnostic imaging , Child , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Prospective Studies , Sensation Disorders/psychology
12.
Brain Connect ; 9(2): 209-220, 2019 03.
Article in English | MEDLINE | ID: mdl-30661372

ABSTRACT

Prior neuroimaging studies have reported white matter network underconnectivity as a potential mechanism for autism spectrum disorder (ASD). In this study, we examined the structural connectome of children with ASD using edge density imaging (EDI), and then applied machine-learning algorithms to identify children with ASD based on tract-based connectivity metrics. Boys aged 8-12 years were included: 14 with ASD and 33 typically developing children. The edge density (ED) maps were computed from probabilistic streamline tractography applied to high angular resolution diffusion imaging. Tract-based spatial statistics was used for voxel-wise comparison and coregistration of ED maps in addition to conventional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). Tract-based average DTI/connectome metrics were calculated and used as input for different machine-learning models: naïve Bayes, random forest, support vector machines (SVMs), and neural networks. For these models, cross-validation was performed with stratified random sampling ( × 1,000 permutations). The average accuracy among validation samples was calculated. In voxel-wise analysis, the body and splenium of corpus callosum, bilateral superior and posterior corona radiata, and left superior longitudinal fasciculus showed significantly lower ED in children with ASD; whereas, we could not find significant difference in FA, MD, and RD maps between the two study groups. Overall, machine-learning models using tract-based ED metrics had better performance in identification of children with ASD compared with those using FA, MD, and RD. The EDI-based random forest models had greater average accuracy (75.3%), specificity (97.0%), and positive predictive value (81.5%), whereas EDI-based polynomial SVM had greater sensitivity (51.4%) and negative predictive values (77.7%). In conclusion, we found reduced density of connectome edges in the posterior white matter tracts of children with ASD, and demonstrated the feasibility of connectome-based machine-learning algorithms in identification of children with ASD.


Subject(s)
Autism Spectrum Disorder/diagnostic imaging , Connectome/methods , White Matter/diagnostic imaging , Algorithms , Anisotropy , Autism Spectrum Disorder/physiopathology , Bayes Theorem , Biomarkers , Brain/diagnostic imaging , Brain/physiopathology , Child , Computer Simulation , Diffusion Tensor Imaging/methods , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Male , Neuroimaging/methods , Sensitivity and Specificity , Support Vector Machine , White Matter/physiopathology
13.
J Neurotrauma ; 34(8): 1546-1557, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28085565

ABSTRACT

Brain lesions are subtle or absent in most patients with mild traumatic brain injury (mTBI) and the standard clinical criteria are not reliable for predicting long-term outcome. This study investigates resting-state functional MRI (rsfMRI) to assess semiacute alterations in brain connectivity and its relationship with outcome measures assessed 6 months after injury. Seventy-five mTBI patients were recruited as part of the prospective multicenter Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) pilot study and compared with matched 47 healthy subjects. Patients were classified following radiological criteria: CT/MRI positive, evidence of lesions; CT/MRI negative, without evidence of brain lesions. rsfMRI data were acquired and then processed using probabilistic independent component analysis. We compared the functional connectivity of the resting-state networks (RSNs) between patients and controls, as well as group differences in the interactions between RSNs, and related both to cognitive and behavioral performance at 6 months post-injury. Alterations were found in the spatial maps of the RSNs between mTBI patients and healthy controls in networks involved in behavioral and cognition processes. These alterations were predictive of mTBI patients' outcomes at 6 months post-injury. Moreover, different patterns of reduced network interactions were found between the CT/MRI positive and CT/MRI negative patients and the control group. These rsfMRI results demonstrate that even mTBI patients not showing brain lesions on conventional CT/MRI scans can have alterations of functional connectivity at the semiacute stage that help explain their outcomes. These results suggest rsfMRI as a sensitive biomarker both for early diagnosis and for prediction of the cognitive and behavioral performance of these patients.


Subject(s)
Brain Concussion/physiopathology , Cognitive Dysfunction/physiopathology , Connectome/methods , Nerve Net/physiopathology , Outcome Assessment, Health Care , Adolescent , Adult , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Post-Concussion Syndrome/diagnostic imaging , Post-Concussion Syndrome/physiopathology , Tomography, X-Ray Computed , Young Adult
14.
Front Hum Neurosci ; 10: 35, 2016.
Article in English | MEDLINE | ID: mdl-26903842

ABSTRACT

We previously identified visual tracking deficits and associated degradation of integrity in specific white matter tracts as characteristics of concussion. We re-explored these characteristics in adult patients with persistent post-concussive symptoms using independent new data acquired during 2009-2012. Thirty-two patients and 126 normal controls underwent cognitive assessments and MR-DTI. After data collection, a subset of control subjects was selected to be individually paired with patients based on gender and age. We identified patients' cognitive deficits through pairwise comparisons between patients and matched control subjects. Within the remaining 94 normal subjects, we identified white matter tracts whose integrity correlated with metrics that indicated performance degradation in patients. We then tested for reduced integrity in these white matter tracts in patients relative to matched controls. Most patients showed no abnormality in MR images unlike the previous study. Patients' visual tracking was generally normal. Patients' response times in an attention task were slowed, but could not be explained as reduced integrity of white matter tracts relating to normal response timing. In the present patient cohort, we did not observe behavioral or anatomical deficits that we previously identified as characteristic of concussion. The recent cohort likely represented those with milder injury compared to the earlier cohort. The discrepancy may be explained by a change in the patient recruitment pool circa 2007 associated with an increase in public awareness of concussion.

15.
Front Hum Neurosci ; 9: 340, 2015.
Article in English | MEDLINE | ID: mdl-26124716

ABSTRACT

Neural correlates of working memory (WM) in healthy subjects have been extensively investigated using functional MRI (fMRI). However it still remains unclear how cortical areas forming part of functional WM networks are also connected by white matter fiber bundles, and whether DTI measures, used as indices of microstructural properties and directionality of these connections, can predict individual differences in task performance. fMRI data were obtained from 23 healthy young subjects while performing one visuospatial (square location) and one visuoperceptual (face identification) 2-back task. Diffusion tensor imaging (DTI) data were also acquired. We used independent component analysis (ICA) of fMRI data to identify the main functional networks involved in WM tasks. Voxel-wise DTI analyses were performed to find correlations between structural white matter and task performance measures, and probabilistic tracking of DTI data was used to identify the white matter bundles connecting the nodes of the functional networks. We found that functional recruitment of the fusiform and the inferior frontal cortex was specific for the visuoperceptual working memory task, while there was a high overlap in brain activity maps in parietal and middle frontal areas for both tasks. Axial diffusivity and fractional anisotropy, of the tracts connecting the fusiform with the inferior frontal areas correlated with processing speed in the visuoperceptual working memory task. Although our findings need to be considered as exploratory, we conclude that both tasks share a highly-overlapping pattern of activity in areas of frontal and parietal lobes with the only differences in activation between tasks located in the fusiform and inferior frontal regions for the visuoperceptual task. Moreover, we have found that the DTI measures are predictive of the processing speed.

16.
Neurobiol Aging ; 35(10): 2193-202, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24814675

ABSTRACT

We used resting-functional magnetic resonance imaging data from 98 healthy older adults to analyze how local and global measures of functional brain connectivity are affected by age, and whether they are related to differences in memory performance. Whole-brain networks were created individually by parcellating the brain into 90 cerebral regions and obtaining pairwise connectivity. First, we studied age-associations in interregional connectivity and their relationship with the length of the connections. Aging was associated with less connectivity in the long-range connections of fronto-parietal and fronto-occipital systems and with higher connectivity of the short-range connections within frontal, parietal, and occipital lobes. We also used the graph theory to measure functional integration and segregation. The pattern of the overall age-related correlations presented positive correlations of average minimum path length (r = 0.380, p = 0.008) and of global clustering coefficients (r = 0.454, p < 0.001), leading to less integrated and more segregated global networks. Main correlations in clustering coefficients were located in the frontal and parietal lobes. Higher clustering coefficients of some areas were related to lower performance in verbal and visual memory functions. In conclusion, we found that older participants showed lower connectivity of long-range connections together with higher functional segregation of these same connections, which appeared to indicate a more local clustering of information processing. Higher local clustering in older participants was negatively related to memory performance.


Subject(s)
Aging/physiology , Aging/psychology , Brain/pathology , Brain/physiology , Memory , Nerve Net/pathology , Nerve Net/physiology , Synaptic Transmission/physiology , Aged , Aging/pathology , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Organ Size , Rest/physiology
17.
J Neurotrauma ; 30(23): 1991-4, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23822854

ABSTRACT

Signal-intensity contrast of T1-weighted magnetic resonance imaging scans has been associated with tissue integrity and reported as a sign of neurodegenerative changes in diseases such as Alzheimer's disease. After severe traumatic brain injury (TBI), progressive structural changes occur in white (WM) and gray matter (GM). In the current study, we assessed the signal-intensity contrast of GM and WM in patients with diffuse TBI in the chronic stage to (1) characterize the regional pattern of WM/GM changes in intensity contrast associated with traumatic axonal injury, (2) evaluate possible associations between this measure and diffusion tensor image (DTI)/fractional anisotropy (FA) for detecting WM damage, and (3) investigate the correlates of both measures with cognitive outcomes. Structural T1 scans were processed with FreeSurfer software to identify the boundary and calculate the WM/GM contrast maps. DTIs were processed with the FMRIB software library to obtain FA maps. The WM/GM contrast in TBI patients showed a pattern of reduction in almost all of the brain, except the visual and motor primary regions. Global FA values obtained from DTI correlated with the intensity contrast of all associative cerebral regions. WM/GM contrast correlated with memory functions, whereas FA global values correlated with tests measuring memory and mental processing speed. In conclusion, tissue-contrast intensity is a very sensitive measure for detecting structural brain damage in chronic, severe and diffuse TBI, but is less sensitive than FA for reflecting neuropsychological sequelae, such as impaired mental processing speed.


Subject(s)
Brain Injuries/pathology , Brain/pathology , Adult , Brain Injuries/complications , Brain Injuries/psychology , Chronic Disease , Cognition Disorders/etiology , Cognition Disorders/psychology , Diffusion Tensor Imaging , Female , Glasgow Coma Scale , Humans , Image Processing, Computer-Assisted , Male , Neuropsychological Tests , Young Adult
18.
JAMA Neurol ; 70(7): 845-51, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23689958

ABSTRACT

IMPORTANCE: The study of brain activity and connectivity at rest provides a unique opportunity for the investigation of the brain substrates of cognitive outcome after traumatic axonal injury. This knowledge may contribute to improve clinical management and rehabilitation programs. OBJECTIVE: To study functional magnetic resonance imaging abnormalities in signal amplitude and brain connectivity at rest and their relationship to cognitive outcome in patients with chronic and severe traumatic axonal injury. DESIGN: Observational study. SETTING: University of Barcelona and Hospital Clinic de Barcelona, Barcelona, and Institut Guttmann-Neurorehabilitation Hospital, Badalona, Spain. PARTICIPANTS: Twenty patients with traumatic brain injury (TBI) were studied, along with 17 matched healthy volunteers. INTERVENTIONS: Resting-state functional magnetic resonance imaging and diffusion tensor imaging data were acquired. After exploring group differences in amplitude of low-frequency fluctuations (ALFF), we studied functional connectivity within the default mode network (DMN) by means of independent component analysis, followed by a dual regression approach and seed-based connectivity analyses. Finally, we performed probabilistic tractography between the frontal and posterior nodes of the DMN. MAIN OUTCOMES AND MEASURES: Signal amplitude and functional connectivity during the resting state, tractography related to DMN, and the association between signal amplitudes and cognitive outcome. RESULTS: Patients had greater ALFF in frontal regions, which was correlated with cognitive performance. Within the DMN, patients showed increased connectivity in the frontal lobes. Seed-based connectivity analyses revealed augmented connectivity within surrounding areas of the frontal and left parietal nodes of the DMN. Fractional anisotropy of the cingulate tract was correlated with increased connectivity of the frontal node of the DMN in patients with TBI. CONCLUSIONS AND RELEVANCE: Increased ALFF is related to better cognitive performance in chronic TBI. The loss of structural connectivity produced by damage to the cingulum tract explained the compensatory increases in functional connectivity within the frontal node of the DMN.


Subject(s)
Brain Injuries/pathology , Cerebral Cortex/pathology , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , Nerve Net/pathology , Adult , Anisotropy , Brain Injuries/physiopathology , Cerebral Cortex/physiopathology , Diffuse Axonal Injury/pathology , Diffuse Axonal Injury/physiopathology , Diffusion Tensor Imaging/instrumentation , Female , Frontal Lobe/pathology , Frontal Lobe/physiopathology , Gyrus Cinguli/pathology , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging/instrumentation , Male , Nerve Net/physiopathology , Neuropsychological Tests , Parietal Lobe/pathology , Parietal Lobe/physiopathology , Young Adult
19.
Behav Brain Res ; 246: 148-53, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23458742

ABSTRACT

In non-demented older persons, smell dysfunction, measured premortem, has been associated with postmortem brain degeneration similar to that of Alzheimer's disease. We hypothesized that distinct measures of gray and white matter integrity evaluated through magnetic resonance imaging (MRI) techniques could detect degenerative changes associated with age-related olfactory dysfunction. High-resolution T1-weighted images and diffusion-tensor images (DTI) of 30 clinically healthy subjects aged 51-77 were acquired with a 3-Tesla MRI scanner. Odor identification performance was assessed by means of the University of Pennsylvania Smell Identification Test (UPSIT). UPSIT scores correlated with right amygdalar volume and bilateral perirhinal and entorhinal cortices gray matter volume. Olfactory performance also correlated with postcentral gyrus cortical thickness and with fractional anisotropy and mean diffusivity levels in the splenium of the corpus callosum and the superior longitudinal fasciculi. Our results suggest that age-related olfactory loss is accompanied by diffuse degenerative changes that might correspond to the preclinical stages of neurodegenerative processes.


Subject(s)
Olfaction Disorders/pathology , Olfactory Pathways/pathology , Smell/physiology , Aged , Anisotropy , Brain Mapping , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Fibers, Myelinated/physiology , Neuroanatomy , Neuropsychological Tests , Verbal Learning/physiology
20.
Cortex ; 49(3): 646-57, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22482692

ABSTRACT

We investigated structural brain damage in subjects who had suffered severe and diffuse traumatic brain injury (TBI), and examined its relationship with declarative memory impairment. Cortical thickness, diffusion tensor imaging (DTI), and volumetric and shape data of the hippocampus were assessed in a group of 26 adults with severe TBI in the chronic stage and 22 healthy matched controls. Declarative memory was evaluated by Rey's Auditory Verbal Learning Test (RAVLT). TBI patients performed significantly worse than controls on all RAVLT measures. The group comparison for cortical thickness and DTI revealed a pattern of widespread atrophy in TBI patients. In the TBI group DTI measures correlated with cortical thickness in the prefrontal and parietal regions, including the precuneus. Declarative memory correlated with both cortical thickness and DTI measures. However, although hippocampal volume was significantly decreased in TBI patients, no correlations were found. Multiple regression analysis of all the structural measures revealed that decreases in Fractional anisotropy (FA) and thinning of the left parietal region were the best predictors of memory impairment. In conclusion, cortical thickness reductions in the left hemisphere and a lack of white matter integrity are the main contributors to long-term impairment in declarative memory among patients suffering from severe and diffuse TBI. In this study the hippocampus did not make a significant contribution to memory dysfunctions, suggesting that damage to this structure is compensated for by other regions, with the definitive sequelae being mainly explained by alterations in cortico-subcortical connectivity.


Subject(s)
Brain Injuries/psychology , Cerebral Cortex/pathology , Hippocampus/pathology , Memory Disorders/psychology , Nerve Fibers, Myelinated/pathology , Adult , Atrophy/complications , Atrophy/pathology , Atrophy/physiopathology , Brain Injuries/complications , Brain Injuries/pathology , Brain Mapping , Cerebral Cortex/physiopathology , Diffusion Tensor Imaging , Female , Hippocampus/physiopathology , Humans , Male , Memory/physiology , Memory Disorders/etiology , Memory Disorders/pathology , Memory Disorders/physiopathology , Neuropsychological Tests , Organ Size , Verbal Learning/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...