Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Hazard Mater ; 464: 132927, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37984149

ABSTRACT

Microplastic contamination in marine ecosystems, and its negative effects through trophic transfer among marine organisms, remains a growing concern. Our study investigates the trophic transfer and individual impacts of polystyrene microplastics (MPs) in an estuarine food chain model, comprising Artemia salina as primary organism, Litopenaeus vanamei as secondary organism, and Oreochromis niloticus as tertiary organism. A. salina were exposed to 1 µm polystyrene microplastics (106 particles/ml), further it was fed to L.vannamei, which, in turn, were fed to O.niloticus. MPs transfer was studied over 24 and 48 h. Fluorescence microscopy confirmed MPs presence in the gut and fecal matter of all the test organisms. Histopathology revealed MPs in the gut epithelium, but did not translocate to other tissues of the test species. MPs exposed A.salina had a bioconcentration factor of 0.0029 ± 0.0008 (24 h) and 0.0000941 ± 0.0000721 (48 h). Whereas, the bioaccumulation factor values for L. vanamei were 0.00012143 ± 0.000009 (24 h) and 0.0025899 ± 0.0024101 (48 h), and for O.niloticus were 0.154992 ± 0.007695 (24 h) and 0.00972577 ± 0.00589923 (48 h). Despite low MPs transfer among trophic levels, the induced stress was evident through biochemical responses in all the test species. This implies the potential risk of MPs ultimately reaching humans via the food chain.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics/toxicity , Polystyrenes/toxicity , Food Chain , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
2.
Environ Pollut ; 334: 122159, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37442330

ABSTRACT

The prevalence and adverse impacts of microplastics requires the identification of science-based abatement measures. Electrocoagulation treatment is a cost-effective oxidation process that removes numerous pollutants, including to some extent, microplastics. The performance of a custom-built electrocoagulation reactor was determined by calculating the removal efficiency. The effects of the oxidation process on polymer types (polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET) and polypropylene (PP)) and shapes (fibres and fragments) were investigated in synthetic wastewater and laundry wastewater. The calculated removal efficiency suggested that electrocoagulation treatment was an effective technology for microplastics abatement. More fibres tended to be removed than fragments, viz. 92% fibres removed versus 88% fragments. The findings also demonstrated that specific polymers were preferentially removed, viz. PET > LDPE > PP > PA. Further analysis indicated that the electrocoagulation treatment affected microplastic polymers physically, viz. flaking and changed surface conditions, as well as chemically, viz. changes in vibrational energies of C-O-C stretching bonds, C=O stretching bonds, C-H stretching bonds and formation of reactive oxygen species (ROS). Our findings indicate that whilst seemingly effective, electrocoagulation treatment induces changes to microplastic polymers that could beneficially lead to degradation, and/or further fragmentation or breakdown and thereby potentially generating more bioavailable toxic nanoplastic byproducts.


Subject(s)
Microplastics , Water Pollutants, Chemical , Polymers , Plastics , Wastewater , Water Pollutants, Chemical/analysis , Polypropylenes , Nylons , Polyethylene , Polyethylene Terephthalates , Electrocoagulation , Environmental Monitoring
3.
Food Chem ; 378: 131978, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35033712

ABSTRACT

Mycotoxins are secondary metabolites of fungi that cause severe damage to agricultural products and food in the food supply chain. These detrimental pollutants have been directly linked with poor socioeconomic patterns and human health issues. Among the natural micropollutants, ochratoxin A (OTA) and deoxynivalenol (DON) are widely distributed in food materials. The primary occurrence of these mycotoxins is reported in almost all cereal grains and fresh agro-products. Both mycotoxins have shown harmful effects, such as nephrotoxic, hepatotoxic, and genotoxic effects, in humans due to their complex structural formation during the degradation/acetylation reaction. In addition, improper preharvest, harvest, and postharvest handling tend to lead to the formation of OTA and DON in various food commodities, which allows different harmful fungicides in practice. Therefore, this review provides more insight into the distribution and toxicity of OTA/DON in the food matrix and human health. Furthermore, the interactive effects of OTA/DON with co-contaminated organic and inorganic compounds are discussed. Finally, international regulation and mitigation strategies for detoxication are critically evaluated to meet food safety and good agriculture practices.


Subject(s)
Mycotoxins , Ochratoxins , Trichothecenes , Edible Grain/chemistry , Food Contamination/analysis , Humans , Mycotoxins/analysis , Ochratoxins/analysis , Ochratoxins/toxicity , Trichothecenes/analysis , Trichothecenes/toxicity
4.
Heliyon ; 7(2): e06343, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33655084

ABSTRACT

Plastic products have played significant roles in protecting people during the COVID-19 pandemic. The widespread use of personal protective gear created a massive disruption in the supply chain and waste disposal system. Millions of discarded single-use plastics (masks, gloves, aprons, and bottles of sanitizers) have been added to the terrestrial environment and could cause a surge in plastics washing up the ocean coastlines and littering the seabed. This paper attempts to assess the environmental footprints of the global plastic wastes generated during COVID-19 and analyze the potential impacts associated with plastic pollution. The amount of plastic wastes generated worldwide since the outbreak is estimated at 1.6 million tonnes/day. We estimate that approximately 3.4 billion single-use facemasks/face shields are discarded daily as a result of COVID-19 pandemic, globally. Our comprehensive data analysis does indicate that COVID-19 will reverse the momentum of years-long global battle to reduce plastic waste pollution. As governments are looking to turbo-charge the economy by supporting businesses weather the pandemic, there is an opportunity to rebuild new industries that can innovate new reusable or non-plastic PPEs. The unanticipated occurrence of a pandemic of this scale has resulted in unmanageable levels of biomedical plastic wastes. This expert insight attempts to raise awareness for the adoption of dynamic waste management strategies targeted at reducing environmental contamination by plastics generated during the COVID-19 pandemic.

5.
Sci Total Environ ; 706: 135978, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31864138

ABSTRACT

Scientific evidences abound of the occurrence of plastic pollution, from mega- to nano-sized plastics, in virtually all matrixes of the environment. Apart from the direct effects of plastics and microplastics pollution such as entanglement, inflammation of cells and gut blockage due to ingestion, plastics are also able to act as vectors of various chemical contaminants in the aquatic environment. This paper provides a review of the association of plastic additives with environmental microplastics, how the structure and composition of polymers influence sorption capacities and highlights some of the models that have been employed to interpret experimental data from recent sorption studies. The factors that influence the sorption of chemical contaminants such as the degree of crystallinity, surface weathering, and chemical properties of contaminants. and the implications of chemical sorption by plastics for the marine food web and human health are also discussed. It was however observed that most studies relied on pristine or artificially aged plastics rather than field plastic samples for studies on chemical sorption by plastics.

6.
Sci Total Environ ; 698: 134057, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31783460

ABSTRACT

Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.


Subject(s)
Diclofenac , Environmental Monitoring , Environmental Pollutants/analysis , Biota
7.
Sci Total Environ ; 659: 724-731, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31096402

ABSTRACT

Remediation of soil contaminated with pollutants using biological agents is more a sustainable and greener approach as compared to physico-chemical technologies. We recently confirmed that a microalga, Chlorella sp. MM3, and a bacterium, Rhodococcus wratislaviensis strain 9, can degrade high-molecular weight PAHs. In this study, an algal-bacterial system of these two strains was developed by long-term growth on a mixture of phenanthrene, pyrene, and benzo[a]pyrene (BaP). In a soil spiked with 50 mg L-1 phenanthrene, 10 mg L-1 of pyrene and 10 mg L-1 of BaP, the algal-bacterial system degraded these PAHs almost completely in slurry phase within 30 days. Also, the algal-bacterial system was able to successfully remediate these three PAHs in a soil long-term contaminated with 245.1 mg kg-1 of 16 PAHs and several heavy metals under slurry phase in 21 days. Use of such appropriate assays as chlorophyll estimation for the microalga and semi-quantitative PCR for the bacterium confirmed survival of both the strains during soil bioremediation. Moreover, the residual toxicity test involving Escherichia coli DH5α that expresses green fluorescent protein indicated the successful bioremediation of PAHs-contaminated soil in slurry phase. For the first time, here we demonstrate the great potential of an algal-bacterial synergy in bioremediation of soil long-term contaminated with PAHs even in the presence of toxic heavy metals.


Subject(s)
Chlorella/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Rhodococcus/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Soil Microbiology
8.
Environ Int ; 115: 400-409, 2018 06.
Article in English | MEDLINE | ID: mdl-29653694

ABSTRACT

Plastic litter has become one of the most serious threats to the marine environment. Over 690 marine species have been impacted by plastic debris with small plastic particles being observed in the digestive tract of organisms from different trophic levels. The physical and chemical properties of microplastics facilitate the sorption of contaminants to the particle surface, serving as a vector of contaminants to organisms following ingestion. Bioaccumulation factors for higher trophic organisms and impacts on wider marine food webs remain unknown. The main objectives of this review were to discuss the factors influencing microplastic ingestion; describe the biological impacts of associated chemical contaminants; highlight evidence for the trophic transfer of microplastics and contaminants within marine food webs and outline the future research priorities to address potential human health concerns. Controlled laboratory studies looking at the effects of microplastics and contaminants on model organisms employ nominal concentrations and consequently have little relevance to the real environment. Few studies have attempted to track the fate of microplastics and mixed contaminants through a complex marine food web using environmentally relevant concentrations to identify the real level of risk. To our knowledge, there has been no attempt to understand the transfer of microplastics and associated contaminants from seafood to humans and the implications for human health. Research is needed to determine bioaccumulation factors for popular seafood items in order to identify the potential impacts on human health.


Subject(s)
Food Chain , Food Contamination/analysis , Plastics/adverse effects , Seafood/analysis , Water Pollutants, Chemical/adverse effects , Animals , Aquatic Organisms , Environmental Monitoring , Humans , Public Health
9.
Arch Environ Contam Toxicol ; 71(4): 561-571, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27722931

ABSTRACT

Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg-1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm-1. Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.


Subject(s)
Comet Assay/methods , Hydrocarbons/toxicity , Oligochaeta/physiology , Petroleum/toxicity , Soil Pollutants/toxicity , Animals , Environmental Monitoring , Petroleum Pollution
10.
Biotechnol Prog ; 32(3): 638-48, 2016 05.
Article in English | MEDLINE | ID: mdl-26914145

ABSTRACT

Soils contaminated with crude oil are rich sources of enzymes suitable for both degradation of hydrocarbons through bioremediation processes and improvement of crude oil during its refining steps. Due to the long term selection, crude oil fields are unique environments for the identification of microorganisms with the ability to produce these enzymes. In this metagenomic study, based on Hiseq Illumina sequencing of samples obtained from a crude oil field and analysis of data on MG-RAST, Actinomycetales (9.8%) were found to be the dominant microorganisms, followed by Rhizobiales (3.3%). Furthermore, several functional genes were found in this study, mostly belong to Actinobacteria (12.35%), which have a role in the metabolism of aliphatic and aromatic hydrocarbons (2.51%), desulfurization (0.03%), element shortage (5.6%), and resistance to heavy metals (1.1%). This information will be useful for assisting in the application of microorganisms in the removal of hydrocarbon contamination and/or for improving the quality of crude oil. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:638-648, 2016.


Subject(s)
Actinomycetales/genetics , Alphaproteobacteria/genetics , Hydrocarbons/metabolism , Metagenomics , Petroleum/metabolism , Soil/chemistry , Actinomycetales/metabolism , Alphaproteobacteria/metabolism
11.
Sci Total Environ ; 539: 370-380, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26372939

ABSTRACT

Since crude oil contamination is one of the biggest environmental concerns, its removal from contaminated sites is of interest for both researchers and industries. In situ bioremediation is a promising technique for decreasing or even eliminating crude oil and hydrocarbon contamination. However, since these compounds are potentially toxic for many microorganisms, high loads of contamination can inhibit the microbial community and therefore reduce the removal rate. Therefore, any strategy with the ability to increase the microbial population in such circumstances can be of promise in improving the remediation process. In this study, multiwall carbon nanotubes were employed to support microbial growth in sediments contaminated with crude oil. Following spiking of fresh water sediments with different concentrations of crude oil alone and in a mixture with carbon nanotubes for 30days, the microbial profiles in these sediments were obtained using FLX-pyrosequencing. Next, the ratios of each member of the microbial population in these sediments were compared with those values in the untreated control sediment. This study showed that combination of crude oil and carbon nanotubes can increase the diversity of the total microbial population. Furthermore, these treatments could increase the ratios of several microorganisms that are known to be effective in the degradation of hydrocarbons.


Subject(s)
Fresh Water/microbiology , Geologic Sediments/microbiology , Nanotubes, Carbon/microbiology , Petroleum Pollution/analysis , Petroleum/metabolism , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Fresh Water/chemistry , Geologic Sediments/chemistry , Petroleum/analysis , Water Pollutants, Chemical/analysis
12.
Rev Environ Contam Toxicol ; 236: 1-115, 2016.
Article in English | MEDLINE | ID: mdl-26423073

ABSTRACT

Though several in-situ treatment methods exist to remediate polluted sites, selecting an appropriate site-specific remediation technology is challenging and is critical for successful clean up of polluted sites. Hence, a comprehensive overview of all the available remediation technologies to date is necessary to choose the right technology for an anticipated pollutant. This review has critically evaluated the (i) technological profile of existing in-situ remediation approaches for priority and emerging pollutants, (ii) recent innovative technologies for on-site pollutant remediation, and (iii) current challenges as well as future prospects for developing innovative approaches to enhance the efficacy of remediation at contaminated sites.


Subject(s)
Environmental Pollution/prevention & control , Environmental Restoration and Remediation , Soil Pollutants/chemistry
13.
Rev Environ Contam Toxicol ; 236: 117-92, 2016.
Article in English | MEDLINE | ID: mdl-26423074

ABSTRACT

Pollution and the global health impacts from toxic environmental pollutants are presently of great concern. At present, more than 100 million people are at risk from exposure to a plethora of toxic organic and inorganic pollutants. This review is an exploration of the ex-situ technologies for cleaning-up the contaminated soil, groundwater and air emissions, highlighting their principles, advantages, deficiencies and the knowledge gaps. Challenges and strategies for removing different types of contaminants, mainly heavy metals and priority organic pollutants, are also described.


Subject(s)
Environmental Pollutants/chemistry , Environmental Pollution/prevention & control , Environmental Restoration and Remediation/instrumentation , Metals, Heavy/chemistry , Organic Chemicals/chemistry
14.
Chemosphere ; 144: 1421-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26495826

ABSTRACT

Barite contamination of soil commonly occurs from either barite mining or explorative drilling operations. This work reported in vitro data for barite contaminated soils using the physiologically based extraction test (PBET) methodology. The existence of barite in plant tissue and the possibility of 'biomineralised' zones was also investigated using Scanning Electron Microscopy. Soils with low barium (Ba) concentrations showed a higher proportion of Ba extractability than barite rich samples. Barium uptake to spinach from soil was different between short term spiking studies and field weathered soils. Furthermore, Ba crystals were not evident in spinach tissue or acid digest solutions grown in barium nitrate spiked soils despite high accumulation. Barite was found in the plant digest solutions from barite contaminated soils only. Results indicate that under the conservative assumptions made, a child would need to consume extreme quantities of soil over an extended period to cause chronic health problems.


Subject(s)
Barium Sulfate/pharmacokinetics , Barium/pharmacokinetics , Soil Pollutants/pharmacokinetics , Spinacia oleracea/metabolism , Biological Availability , Child , Child, Preschool , Humans , Risk Assessment , South Australia , Stomach/chemistry
15.
J Hazard Mater ; 296: 175-184, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-25917695

ABSTRACT

Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-ß-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of (14)C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed.


Subject(s)
Benzo(a)pyrene/analysis , Chemical Fractionation/methods , Soil Pollutants/analysis , Soil/chemistry , Aluminum Silicates/chemistry , Australia , Benzo(a)pyrene/chemistry , Clay , Environmental Monitoring , Models, Theoretical , Silicon Dioxide/chemistry , Soil Pollutants/chemistry , Time Factors
16.
Environ Sci Pollut Res Int ; 22(12): 8779-85, 2015 Jun.
Article in English | MEDLINE | ID: mdl-23519481

ABSTRACT

Bioavailability has been used as a key indicator in chemical risk assessment yet poorly quantified risk factor. Worldwide, the framework used to assess potentially contaminated sites is similar, and the decisions are based on threshold contaminant concentration. The uncertainty in the definition and measurement of bioavailability had limited its application to environment risk assessment and remediation. Last ten years have seen major developments in bioavailability research and acceptance. The use of bioavailability in the decision making process as one of the key variables has led to a gradual shift towards a more sophisticated risk-based approach. Now a days, many decision makers and regulatory organisations 'more readily accept' this concept. Bioavailability should be the underlying basis for risk assessment and setting remediation goals of those contaminated sites that pose risk to environmental and human health. This paper summarises the potential application of contaminant bioavailability and bioaccessibility to the assessment of sites affected by different contaminants, and the potential for this to be the underlying basis for sustainable risk assessment and remediation in Europe, North America and Australia over the coming decade.


Subject(s)
Environmental Restoration and Remediation/methods , Risk Assessment/methods , Soil Pollutants/pharmacokinetics , Soil/chemistry , Animals , Biological Availability , Environmental Pollution/legislation & jurisprudence , Humans , Social Control, Formal , Soil Pollutants/analysis
17.
Environ Int ; 70: 192-202, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24937044

ABSTRACT

Oral bioavailability of benzo[a]pyrene (B[a]P) was studied in a swine model using eight spiked soil samples after incubation for 50 and/or 90 days. Silica sand was used as a reference material and the relative bioavailability (RB) of B[a]P in soils was calculated as the quotient of the area under the plasma B[a]P curve (AUC) for soil and AUC for the silica sand. Significantly reduced RB was observed in all study soils after 90 days ageing, ranging from 22.1±0.4% to 62.7±10.1%, except for one very sandy soil (sand content 87.6%) where RB was unchanged (108.1±8.0%). Apart from this, bioavailability decreased during ageing with the decrease (from day 50 to day 90) being only significant for a clayey soil containing expandable clay minerals. Statistical analyses of B[a]P RB at day 90 (eight soils) and soil properties showed no direct correlation between RB and specific soil properties such as total organic carbon (TOC) and clay content which were commonly linked to organic contaminant sequestration. However, strongly significant relationships (p<0.001) were found between RB and the fine particle associated carbon (FPAC) defined as (Silt+Clay)/TOC, and between RB and the soil mesopore (<6nm; p<0.001) fraction, after two samples with high pH and high EC being excluded from the analyses. The bioaccessibility estimated by four in vitro extraction methods: dichloromethane/acetone sonication (DCM/Ace), butanol vortex (BuOH), hydroxypropyl-ß-cyclodextrin extraction (HPCD) and Milli Q water leaching methods at different sampling time (1 day, 50 days and 90 days after spiking) also showed a decreasing trend. Significant correlations were found between B[a]P RB and DCM/Ace (R(2)=0.67, p<0.05) extractable fraction and BuOH (R(2)=0.75, p<0.01) extractable fraction.


Subject(s)
Benzo(a)pyrene/chemistry , Benzo(a)pyrene/metabolism , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Soil/chemistry , Animals , Biological Availability , Kinetics , Models, Animal , Soil Pollutants/blood , Swine
18.
Environ Sci Pollut Res Int ; 21(17): 10339-48, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24862483

ABSTRACT

A new strain isolated from activated sludge and identified as Burkholderia vietnamiensis C09V was used to biodegrade crystal violet (CV) from aqueous solution. To understand the degradation pathways of CV, batch experiments showed that the degradation using B. vietnamiensis C09V significantly depended on conditions such as pH, initial dye concentration and media components, carbon and nitrogen sources. Acceleration in the biodegradation of CV was observed in presence of metal ions such as Cd and Mn. More than 98.86C of CV (30 mg l(-1)) was degraded within 42 h at pH 5 and 30 °C. The biodegradation kinetics of CV corresponded to the pseudo first-order rate model with a rate constant of 0.046 h(-1). UV-visible and Fourier transform infrared spectroscopy (FTIR) were used to identify degradation metabolites. Which further confirmed by LC-MS analysis, indicating that CV was biodegraded to N,N-dimethylaminophenol and Michler's ketone prior to these intermediates being further degraded. Finally, the ability of B. vietnamiensis C09V to remove CV in wastewater was demonstrated.


Subject(s)
Burkholderia/metabolism , Gentian Violet/metabolism , Waste Disposal, Fluid , Biodegradation, Environmental , Burkholderia/genetics , Burkholderia/isolation & purification , Carbon/metabolism , Chromatography, High Pressure Liquid , Culture Techniques , Hydrogen-Ion Concentration , Kinetics , Mass Spectrometry , Metals, Heavy , Nitrogen/metabolism , Sewage/microbiology , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Temperature , Textile Industry , Wastewater
19.
Environ Sci Technol ; 47(9): 4670-6, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23484806

ABSTRACT

Barium (Ba) is a nonessential element to terrestrial organisms and is known to be toxic at elevated concentrations. In this study, the bioavailability and toxicity of Ba in barite (BaSO4) contaminated soils was studied using standard test organisms (Lactuca sativa L. "Great Lakes", Eisenia fetida). Contamination resulted from barite mining activities. Barium concentrations in contaminated soils determined by X-ray fluorescence were in the range 0.13-29.2%. Barite contaminated soils were shown to negatively impact both E. fetida and L. sativa relative to control soil. For E. fetida, pore-water concentrations and acid extractable Ba were linearly related to % body weight loss. In L. sativa, pore-water Ba and exchangeable Ba were both strongly related to shoot Ba and shoot biomass production. A negative linear relationship was observed between shoot Ba content and shoot weight (P < 0.0004, R(2) = 0.39), indicating that Ba accumulation is likely to have induced phytotoxicity. Plant weights were correlated to % weight loss in earthworm (r = -0.568, P = 0.028). Barium concentrations in pore-water were lower than predicted from barite solubility estimates but strongly related to exchangeable Ba, indicating an influence of ion exchange on Ba solubility and toxicity to E. fetida and L. sativa.


Subject(s)
Barium Sulfate/toxicity , Barium/pharmacokinetics , Invertebrates/metabolism , Plants/metabolism , Soil Pollutants/toxicity , Animals , Barium Sulfate/pharmacokinetics , Biological Availability , Humans , Oligochaeta , Soil Pollutants/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...