Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(4): e15339, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37123899

ABSTRACT

Asparagus adscendens Roxb. also known as "safed musli" or "shatavari" is a medicinal plant commonly found in South Asian countries. Shatavari is effective for the treatment of gastric ulcers, renal stones, bronchitis, diabetes, diabetic neuropathy, irritable bowel syndrome, alcohol withdrawal and has reported immunostimulatory effects. In this study, the adjuvant potential of Shatavarin-IV saponin against Staphylococcus aureus bacterin in mice was investigated. Shatavarin-IV was evaluated for its toxicity and immunomodulatory potential against S. aureus bacterin in mice. Cellular and humoral immune responses were assessed. Shatavarin-IV was isolated from the fruit extract of Asparagus adscendens. The confirmation of the isolated molecule as Shatavarin-IV was done via TLC-based comparison with the standard molecule. Further, the structure was confirmed by using extensive spectroscopic analyses and comparing the observed data with literature reports. It was found safe up to the dose of 0.1 mg in the mice model. Shatavarin-IV adjuvant elicited IgG and IgG2b responses at the dose of 40 µg against S. aureus bacterin. However, the cell-mediated immune response was lesser as compared with the commercial Quil-A saponin . We demonstrated that Shatavarin-IV saponin adjuvant produced an optimum humoral immune response against S. aureus bacterin. These results highlight the potential of Shatavarin-IV as an adjuvant in a combination adjuvant in vaccine formulations for induction of potent immune response.

2.
Hum Vaccin Immunother ; 16(12): 2944-2953, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33295829

ABSTRACT

There is an urgent need for a safe, efficacious, and cost-effective vaccine for the coronavirus disease 2019 (COVID-19) pandemic caused by novel coronavirus strain, severe acute respiratory syndrome-2 (SARS-CoV-2). The protective immunity of certain types of vaccines can be enhanced by the addition of adjuvants. Many diverse classes of compounds have been identified as adjuvants, including mineral salts, microbial products, emulsions, saponins, cytokines, polymers, microparticles, and liposomes. Several saponins have been shown to stimulate both the Th1-type immune response and the production of cytotoxic T lymphocytes against endogenous antigens, making them very useful for subunit vaccines, especially those for intracellular pathogens. In this review, we discuss the structural characteristics, mechanisms of action, structure-activity relationship of saponins, biological activities, and use of saponins in various viral vaccines and their applicability to a SARS-CoV-2 vaccine.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Saponins/administration & dosage , Adjuvants, Immunologic/chemistry , Animals , COVID-19/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Humans , Saponins/chemistry , Saponins/immunology , Structure-Activity Relationship , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...