Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 16259, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009639

ABSTRACT

A metal-free combination of rGO/g-C3N4-coupled SrTiO3 (SRN) ternary nanocomposite prepared via a wet impregnation method for UV-Vis light photocatalytic applications. Various physicochemical properties of the samples were investigated by several spectroscopic techniques including X-ray diffraction (XRD), FT-IR, Raman, field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FE-SEM-EDX), high-resolution transmission electron microscopy (HR-TEM), UV-Vis, photoluminescence (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The data suggest agglomerated SRT nanoparticles are dispersed and distributed throughout the surface of the rGO sheets and GCN nanostructures. The photocatalytic performance of the SRN towards combined mixed dye and its degradation activities were evaluated towards the most common industrial effluents, Rhodamine B (RhB) and Methylene blue (MB), under UV-Vis light illumination. The results revealed that the degradation efficiency of the SRN photocatalyst shows excellent performance compared with that of the binary composition and the pure SrTiO3 (SRT) sample. The reaction rate constant for RhB was estimated to be 0.0039 min-1 and for MB to be 0.0316 min-1, which are 3.26 (RhB) and 4.21 (MB) times faster than the pure SRT sample. The enhanced degradation efficiency was attained not only by interfacial formation but also by the speedy transportation of electrons across the heterojunction. After 5 runs of the photocatalytic recylic process, the SRN photocatalyst exhibited ultimate stability without structural changes, and no noticeable degradation was observed. The outcomes of the ternary SRN nanocomposite manifest a dual photocatalytic scheme, the photocatalytic enrichment could be caused by the Z-scheme charge transfer process between GCN, SRT, and rGO nanocomposite, which helps effectual charge separation and keeps a high redox potential. From the results, SRN sample provides insight into the integration of an effective and potential photocatalyst for wastewater treatment toward real-time environmental remediation applications.

2.
J Colloid Interface Sci ; 676: 906-917, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39068835

ABSTRACT

Herein, it is demonstrated that 0D/2D design of zinc sulfide quantum dots encapsulated with yttrium tungstate nanosheets, which were subsequently used to increase the removal of brilliant blue (BB), methyl red (MR) dyes and doxycycline drug using UV-visible light. The produced ZnS-Y2WO6 nanohybrids exhibited excellent catalytic activity, reaching degradation efficiencies of around 89.92%, 80% and 85.51 % for BB, MR dyes and doxycycline drug, respectively, with a minimum irradiation duration of 120, 60 and 125 min. These nanohybrids outperformed Y2WO6 in terms of photocatalytic efficacy due to enhanced light absorption, efficient charge transfer, and decreased charge carrier recombination between ZnS and Y2WO6 nanoparticles. The synergistic combination of ZnS and Y2WO6 nanoparticles resulted in multiple active sites on the composite surface. Furthermore, the ZnS-Y2WO6 nanohybrids maintained excellent degradation efficiencies of 79.45% and 70.12% for BB and MR dyes, respectively, even after five consecutive cycles, with no significant loss of catalytic activity. The produced ZnS-Y2WO6 nanohybrids were thoroughly analyzed utilizing a variety of analytical methods. Furthermore, the degradation of organic dyes and doxycycline drug related possible mechanism were examined using experimental data, indicating the potential of ZnS-Y2WO6 nanohybrids as excellent photocatalytic materials for oxidizing organic dyes and drugs in aquatic conditions.

3.
Environ Geochem Health ; 46(8): 261, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916678

ABSTRACT

A simple sol-gel combustion process was employed for the creation of MFe2O4 (M=Ni, Co) nanoparticles. The synthesized nanoparticles, acting as both photocatalysts and gas sensors, were analyzed using various analytical techniques. MFe2O4 (M=Ni, Co) material improved the degradation of methylene blue (MB) under UV-light irradiation, serving as an enhanced electron transport medium. UV-vis studies demonstrated that NiFe2O4 achieved a 60% degradation, while CoFe2O4 nanostructure exhibited a 76% degradation efficacy in the MB dye removal process. Furthermore, MFe2O4 (M=Ni, Co) demonstrated chemosensitive-type sensor capabilities at ambient temperature. The sensor response and recovery times for CoFe2O4 at a concentration of 100 ppm were 15 and 20, respectively. Overall, the synthesis of MFe2O4 (M=Ni, Co) holds the potential to significantly improve the photocatalytic and gas sensing properties, particularly enhancing the performance of CoFe2O4. The observed enhancements make honey MFe2O4 (M=Ni, Co) a preferable choice for environmental remediation applications.


Subject(s)
Cobalt , Ferric Compounds , Methylene Blue , Nickel , Cobalt/chemistry , Cobalt/analysis , Nickel/chemistry , Nickel/analysis , Ferric Compounds/chemistry , Methylene Blue/chemistry , Metal Nanoparticles/chemistry , Gases , Catalysis , Ultraviolet Rays , Environmental Restoration and Remediation/methods , Nanoparticles/chemistry , Aluminum Oxide , Magnesium Oxide
4.
Materials (Basel) ; 17(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38673251

ABSTRACT

Novel flake-like Ni1-xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1-xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host's lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g-1 at 5 mV s-1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s-1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.

5.
Environ Geochem Health ; 46(3): 96, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376605

ABSTRACT

SrTiO3/Ag nanocomposites were synthesized using a facile wet impregnation method, employing rigorous experimental techniques for comprehensive characterization. XRD, FTIR, UV, PL, FESEM, and HRTEM were meticulously utilized to elucidate their structural, functional, morphological, and optical properties. The electrochemical performance of the SrTiO3/Ag nanocomposite was rigorously assessed, revealing an impressive specific capacitance of 850 F/g at a current density of 1 A. Furthermore, the photocatalytic activity of the SrTiO3/Ag nanocomposite was rigorously examined using methylene blue (MB) dye, and the results were outstanding. After 120 min of UV irradiation, the nanocomposite exhibited an exceptional MB dye degradation efficiency exceeding 88%. The SrTiO3/Ag nanocomposite represents an exemplary catalyst in terms of efficiency, cost-effectiveness, environmental compatibility, and reusability. The electron and superoxide radicals play a chief role in the MB dye degradation process. The inclusion of Ag within the SrTiO3 matrix facilitated the formation of a conductive nano-network, ultimately resulting in superior capacitive and photocatalytic performance.


Subject(s)
Environmental Pollutants , Nanoparticles , Silver , Electric Conductivity , Methylene Blue
6.
Environ Res ; 235: 116671, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37454804

ABSTRACT

The prime aim of this research is to discover new, eco-friendly approaches to reducing agents for manufacturing silver nanoparticles (AgNPs) from fresh fruiting bodies of the edible mushroom Hypsizygus ulmarius (Hu). The confirmation of Hu-mediated AgNPs has been characterized by UV visible spectroscopy, XRD, FTIR, SEM with EDX, HRTEM, AFM, PSA, Zeta poetical and GCMS analysis. The absorption peak of Hu-AgNPs at 430 nm has been confirmed by UV-visible spectroscopy analysis. The findings of the particle size study show that AgNPs have a size distribution with an average of 20 nm. The Zeta potential of NPs reveals a significant build-up of negative charges on their surface. The additional hydrate layers that occurred at the surface of AgNPs are shown in the HR-TEM morphology images. The antibacterial activity results showed that Hu-AgNPs were highly effective against both bacterial pathogens, with gram-positive (+) and gram-negative (-) pathogens having a moderate inhibition effect on K. pneumoniae (5.3 ± 0.3 mm), E. coli (5.3 ± 0.1), and S. aureus (5.2 ± 0.3 mm). Hu-AgNPs (IC50 of 50.78 µg/mL) were found to have dose-dependent cytotoxic action against human lung cancer cell lines (A549). Inhibited cell viability by up to 64.31% after 24 h of treatment. To the best of our knowledge, this is the hand information on the myco-synthesis of AgNPs from the H. ulmarius mushroom extract and the results suggest that it can an excellent source for developing a multipurpose and eco-friendly nano product in future.


Subject(s)
Agaricales , Anti-Infective Agents , Metal Nanoparticles , Humans , Silver/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Staphylococcus aureus , Escherichia coli , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared
7.
Micromachines (Basel) ; 14(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37512765

ABSTRACT

In this study, we utilized calcination and simple impregnation methods to successfully fabricate bare g-C3N4 (GCN) and x% Ag/g-C3N4 (x% AgGCN) composite photocatalysts with various weight percentages (x = 1, 3, 5, and 7 wt.%). The synthesized bare and composite photocatalysts were analyzed to illustrate their phase formation, functional group, morphology, and optical properties utilizing XRD, FT-IR, UV-Vis DRS, PL, FE-SEM, and the EDS. The photodegradation rate of MO under solar light irradiation was measured, and the 5% AgGCN composite photocatalyst showed higher photocatalytic activity (99%), which is very high compared to other bare and composite photocatalysts. The MO dye degradation rate constant with the 5% AgGCN photocatalyst exhibits 14.83 times better photocatalytic activity compared to the bare GCN catalyst. This photocatalyst showed good efficiency in the degradation of MO dye and demonstrated cycling stability even in the 5th successive photocatalytic reaction cycle. The higher photocatalytic activity of the 5% AgGCN composite catalyst for the degradation of MO dye is due to the interaction of Ag with GCN and the localized surface plasmon resonance (SPR) effect of Ag. The scavenger study results indicate that O2●- radicals play a major role in MO dye degradation. A possible charge-transfer mechanism is proposed to explain the solar-light-driven photocatalyst of GCN.

8.
Chemosphere ; 335: 139102, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37290513

ABSTRACT

The domains of environmental cleanup and pathogen inactivation are particularly interesting in nanocomposites (NCs) due to their exceptional physicochemical properties. Tin oxide/reduced graphene oxide nanocomposites (SnO2/rGO NCs) have potential uses in the biological and environmental fields, but little is known about them. This study aimed to investigate the photocatalytic activity and antibacterial efficiency of the nanocomposites. The co-precipitation technique was used to prepare all the samples. XRD, SEM, EDS, TEM, and XPS analyses were employed to characterize the physicochemical properties of SnO2/rGO NCs for structural analysis. The rGO loading sample resulted in a decrease in the crystallite size of SnO2 nanoparticles. TEM and SEM images demonstrate the firm adherence of SnO2 nanoparticles to the rGO sheets. The chemical state and elemental composition of the nanocomposites were validated by the XPS and EDS data. Additionally, the visible-light active photocatalytic and antibacterial capabilities of the synthesized nanocomposites were assessed for the degradation of Orange II and methylene blue, as well as the suppression of the growth of S. aureus and E. coli. As a result, the synthesized SnO2/rGO NCs are improved photocatalysts and antibacterial agents, expanding their potential in the fields of environmental remediation and water disinfection.


Subject(s)
Environmental Pollutants , Escherichia coli , Staphylococcus aureus , Light , Anti-Bacterial Agents/pharmacology
9.
Chemosphere ; 336: 139227, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37327825

ABSTRACT

We report on the synthesis of silver oxide/reduced graphene oxide nanocomposites (Ag/rGO NCs) using a hydrothermal technique. This paper presents a simple method for synthesizing Ag/rGO hybrid nanocomposites, which can be used for environmentally treating hazardous organic pollutants. The photocatalytic degradation of model artificial Rhodamine B dye and bisphenol A was assessed under visible light illumination. The crystallinity, binding energy, and surface morphologies of the synthesized samples were determined. The silver oxide loading sample resulted in a decrease in the rGO crystallite size. SEM and TEM images demonstrate strong adhesion of the Ag NPs to the rGO sheets. XPS analysis validated the binding energy and elemental composition of the Ag/rGO hybrid nanocomposites. The objective of the experiment was to enhance the photocatalytic efficiency of rGO in the visible region using Ag nanoparticles. The synthesized nanocomposites in the visible region exhibited good photodegradation percentages of approximately 97.5% and 98.6% after 120 min of irradiation for pure rGO, Ag NPs, and Ag/rGO nanohybrid, respectively. Furthermore, the Ag/rGO nanohybrid maintained their degradation ability for up to three cycles. The synthesized Ag/rGO nanohybrid demonstrated enhanced photocatalytic activity, expanding their potential for environmental remediation. Based on the investigations, Ag/rGO nanohybrid proved to be an effective photocatalyst and holds promise as an ideal material for future applications in preventing water pollution.


Subject(s)
Metal Nanoparticles , Metal Nanoparticles/chemistry , Silver , Light , Water
10.
Int J Biol Macromol ; 225: 103-111, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36481334

ABSTRACT

The industrial discharge of dye pollutant contaminated wastewater is the major cause of water and soil pollution. Photocatalysis is a promising and green remediation technology, which has received widespread attention in the remediation of hazardous dyes from aqueous environment and convert them into harmless compounds. Herein, we report the synthesis of chitosan (CS) functionalized bismuth oxychloride/zinc oxide (BiOCl/ZnO) nanocomposite by a modified hydrothermal route. The physiochemical characterization revealed that the synthesized nanocomposite have crystalline, agglomerated spherical along with rod shaped morphology and size range from 35 to 160 nm. FTIR peaks at 825, 727, 662 and 622 cm-1 specified the presence of BiO and ZnO bonds, whereas peak at 1635 cm-1 revealed the existence of amine groups which confirms the presence of CS in the synthesized CS-BiOCl/ZnO nanocomposite. Catalytic property of synthesized nanocomposite was evaluated by the degradation of Congo red (CR) under UV-light irradiation. CR dye degradation percentage was found to be 93 % within a short period of 40 min by utilizing UV-light. Furthermore, reusability of CS-BiOCl/ZnO photocatalyst was also investigated, and it remained significant photocatalytic activity after three consecutive cycles. Hence, the results obtained in this study revealed that CS-BiOCl/ZnO nanocomposite can be used as a potential photocatalyst to remediate organic pollutants in various industries.


Subject(s)
Chitosan , Nanocomposites , Zinc Oxide , Zinc Oxide/chemistry , Congo Red/chemistry , Chitosan/chemistry , Light , Nanocomposites/chemistry , Coloring Agents , Water , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL