Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 44(4): 2216-2227, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33048673

ABSTRACT

In this article we introduce a new self-supervised, semi-parametric approach for synthesizing novel views of a vehicle starting from a single monocular image. Differently from parametric (i.e., entirely learning-based) methods, we show how a-priori geometric knowledge about the object and the 3D world can be successfully integrated into a deep learning based image generation framework. As this geometric component is not learnt, we call our approach semi-parametric. In particular, we exploit man-made object symmetry and piece-wise planarity to integrate rich a-priori visual information into the novel viewpoint synthesis process. An Image Completion Network (ICN) is then trained to generate a realistic image starting from this geometric guidance. This careful blend between parametric and non-parametric components allows us to i) operate in a real-world scenario, ii) preserve high-frequency visual information such as textures, iii) handle truly arbitrary 3D roto-translations of the input, and iv) perform shape transfer to completely different 3D models. Eventually, we show that our approach can be easily complemented with synthetic data and extended to other rigid objects with completely different topology, even in presence of concave structures and holes (e.g., chairs). A comprehensive experimental analysis against state-of-the-art competitors shows the efficacy of our method both from a quantitative and a perceptive point of view. Supplementary material, animated results, code, and data are available at: https://github.com/ndrplz/semiparametric.

2.
Vet Res ; 51(1): 51, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32276670

ABSTRACT

Diseases of the respiratory system are known to negatively impact the profitability of the pig industry, worldwide. Considering the relatively short lifespan of pigs, lesions can be still evident at slaughter, where they can be usefully recorded and scored. Therefore, the slaughterhouse represents a key check-point to assess the health status of pigs, providing unique and valuable feedback to the farm, as well as an important source of data for epidemiological studies. Although relevant, scoring lesions in slaughtered pigs represents a very time-consuming and costly activity, thus making difficult their systematic recording. The present study has been carried out to train a convolutional neural network-based system to automatically score pleurisy in slaughtered pigs. The automation of such a process would be extremely helpful to enable a systematic examination of all slaughtered livestock. Overall, our data indicate that the proposed system is well able to differentiate half carcasses affected with pleurisy from healthy ones, with an overall accuracy of 85.5%. The system was better able to recognize severely affected half carcasses as compared with those showing less severe lesions. The training of convolutional neural networks to identify and score pneumonia, on the one hand, and the achievement of trials in large capacity slaughterhouses, on the other, represent the natural pursuance of the present study. As a result, convolutional neural network-based technologies could provide a fast and cheap tool to systematically record lesions in slaughtered pigs, thus supplying an enormous amount of useful data to all stakeholders in the pig industry.


Subject(s)
Neural Networks, Computer , Pleurisy/veterinary , Swine Diseases/pathology , Abattoirs , Animals , Pleurisy/pathology , Pneumonia/pathology , Pneumonia/veterinary , Sus scrofa , Swine
3.
IEEE Trans Pattern Anal Mach Intell ; 41(7): 1720-1733, 2019 07.
Article in English | MEDLINE | ID: mdl-29994193

ABSTRACT

In this work we aim to predict the driver's focus of attention. The goal is to estimate what a person would pay attention to while driving, and which part of the scene around the vehicle is more critical for the task. To this end we propose a new computer vision model based on a multi-branch deep architecture that integrates three sources of information: raw video, motion and scene semantics. We also introduce DR(eye)VE, the largest dataset of driving scenes for which eye-tracking annotations are available. This dataset features more than 500,000 registered frames, matching ego-centric views (from glasses worn by drivers) and car-centric views (from roof-mounted camera), further enriched by other sensors measurements. Results highlight that several attention patterns are shared across drivers and can be reproduced to some extent. The indication of which elements in the scene are likely to capture the driver's attention may benefit several applications in the context of human-vehicle interaction and driver attention analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...