Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Proc Natl Acad Sci U S A ; 120(50): e2314698120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38064509

ABSTRACT

Mutations in many visual cycle enzymes in photoreceptors and retinal pigment epithelium (RPE) cells can lead to the chronic accumulation of toxic retinoid byproducts, which poison photoreceptors and the underlying RPE if left unchecked. Without a functional ATP-binding cassette, sub-family A, member 4 (ABCA4), there is an elevation of all-trans-retinal and prolonged buildup of all-trans-retinal adducts, resulting in a retinal degenerative disease known as Stargardt-1 disease. Even in this monogenic disorder, there is significant heterogeneity in the time to onset of symptoms among patients. Using a combination of molecular techniques, we studied Abca4 knockout (simulating human noncoding disease variants) and Abca4 knock-in mice (simulating human misfolded, catalytically inactive protein variants), which serve as models for Stargardt-1 disease. We compared the two strains to ascertain whether they exhibit differential responses to agents that affect cytokine signaling and/or ceramide metabolism, as alterations in either of these pathways can exacerbate retinal degenerative phenotypes. We found different degrees of responsiveness to maraviroc, a known immunomodulatory CCR5 antagonist, and to the ceramide-lowering agent AdipoRon, an agonist of the ADIPOR1 and ADIPOR2 receptors. The two strains also display different degrees of transcriptional deviation from matched WT controls. Our phenotypic comparison of the two distinct Abca4 mutant-mouse models sheds light on potential therapeutic avenues previously unexplored in the treatment of Stargardt disease and provides a surrogate assay for assessing the effectiveness for genome editing.


Subject(s)
Macular Degeneration , Retinal Degeneration , Humans , Mice , Animals , Stargardt Disease/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/genetics , Macular Degeneration/metabolism , Retinaldehyde/metabolism , Retina/metabolism , Retinal Degeneration/drug therapy , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Disease Models, Animal , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism
2.
Cell Rep ; 42(8): 112982, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37585292

ABSTRACT

In daylight, demand for visual chromophore (11-cis-retinal) exceeds supply by the classical visual cycle. This shortfall is compensated, in part, by the retinal G-protein-coupled receptor (RGR) photoisomerase, which is expressed in both the retinal pigment epithelium (RPE) and in Müller cells. The relative contributions of these two cellular pools of RGR to the maintenance of photoreceptor light responses are not known. Here, we use a cell-specific gene reactivation approach to elucidate the kinetics of RGR-mediated recovery of photoreceptor responses following light exposure. Electroretinographic measurements in mice with RGR expression limited to either cell type reveal that the RPE and a specialized subset of Müller glia contribute both to scotopic and photopic function. We demonstrate that 11-cis-retinal formed through photoisomerization is rapidly hydrolyzed, consistent with its role in a rapid visual pigment regeneration process. Our study shows that RGR provides a pan-retinal sink for all-trans-retinal released under sustained light conditions and supports rapid chromophore regeneration through the photic visual cycle.


Subject(s)
Retinal Pigment Epithelium , Retinaldehyde , Animals , Mice , Retinal Pigment Epithelium/metabolism , Retinaldehyde/metabolism , Retinal Pigments/metabolism , Receptors, G-Protein-Coupled/metabolism , Neuroglia/metabolism , Retinal Cone Photoreceptor Cells/metabolism
3.
Proc Natl Acad Sci U S A ; 120(19): e2221045120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126699

ABSTRACT

Chronic, progressive retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa, arise from genetic and environmental perturbations of cellular and tissue homeostasis. These disruptions accumulate with repeated exposures to stress over time, leading to progressive visual impairment and, in many cases, legal blindness. Despite decades of research, therapeutic options for the millions of patients suffering from these disorders remain severely limited, especially for treating earlier stages of pathogenesis when the opportunity to preserve the retinal structure and visual function is greatest. To address this urgent, unmet medical need, we employed a systems pharmacology platform for therapeutic development. Through integrative single-cell transcriptomics, proteomics, and phosphoproteomics, we identified universal molecular mechanisms across distinct models of age-related and inherited retinal degenerations, characterized by impaired physiological resilience to stress. Here, we report that selective, targeted pharmacological inhibition of cyclic nucleotide phosphodiesterases (PDEs), which serve as critical regulatory nodes that modulate intracellular second messenger signaling pathways, stabilized the transcriptome, proteome, and phosphoproteome through downstream activation of protective mechanisms coupled with synergistic inhibition of degenerative processes. This therapeutic intervention enhanced resilience to acute and chronic forms of stress in the degenerating retina, thus preserving tissue structure and function across various models of age-related and inherited retinal disease. Taken together, these findings exemplify a systems pharmacology approach to drug discovery and development, revealing a new class of therapeutics with potential clinical utility in the treatment or prevention of the most common causes of blindness.


Subject(s)
Diabetic Retinopathy , Macular Degeneration , Retinal Degeneration , Retinitis Pigmentosa , Humans , Retina/metabolism , Retinal Degeneration/metabolism , Retinitis Pigmentosa/metabolism , Macular Degeneration/pathology , Diabetic Retinopathy/metabolism
4.
STAR Protoc ; 4(2): 102225, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37058404

ABSTRACT

Noninvasive imaging of endogenous retinal fluorophores, including vitamin A derivatives, is vital to developing new treatments for retinal diseases. Here, we present a protocol for obtaining in vivo two-photon excited fluorescence images of the fundus in the human eye. We describe steps for laser characterization, system alignment, positioning human subjects, and data registration. We detail data processing and demonstrate analysis with example datasets. This technique allays safety concerns by allowing for the acquisition of informative images at low laser exposure. For complete details on the use and execution of this protocol, please refer to Boguslawski et al. (2022).1.

5.
Prog Retin Eye Res ; 93: 101170, 2023 03.
Article in English | MEDLINE | ID: mdl-36787681

ABSTRACT

The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.


Subject(s)
Vision, Ocular , Vitamin A , Humans , Mice , Animals , Vitamin A/analysis , Retina , Retinoids , Retinal Pigment Epithelium
6.
Am J Ophthalmol Case Rep ; 28: 101724, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36324628

ABSTRACT

Purpose: The accuracy of conventional visual function tests, which emit visible light, decreases in patients with corneal scars, cataracts, and vitreous hemorrhages. In contrast, infrared (IR) light exhibits greater tissue penetrance than visible light and is less susceptible to optical opacities. We therefore compared conventional visual function tests against infrared 2-phton microperimetry (2PM-IR) in a subject with a brunescent nuclear sclerotic and posterior subcapsular cataract before and after cataract surgery. Methods: Testing using infrared light microperimetry from a novel device (2PM-IR), visible light microperimetry from a novel device (2PM-Vis), conventional microperimetry, and the cone contrast threshold (CCT) test were performed before and after cataract surgery. Results: Retinal sensitivity assessed using 2PM-IR, 2PM-Vis, and cMP improved by 3.4 dB, 17.4 dB, and 18 dB, respectively. Cone contrast threshold testing improved for the S-cone, M-cone, and l-cone by 111, 14, and 30. Conclusions and Importance: 2PM-IR, unlike conventional visual function tests, showed minimal variability in retinal sensitivity before and after surgery. Thus, IR visual stimulation may provide a more accurate means of measuring neurosensory retinal function by circumventing optical media opacities, aiding in the diagnosis of early macular disease.

7.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-34847075

ABSTRACT

BackgroundNoninvasive assessment of metabolic processes that sustain regeneration of human retinal visual pigments (visual cycle) is essential to improve ophthalmic diagnostics and to accelerate development of new treatments to counter retinal diseases. Fluorescent vitamin A derivatives, which are the chemical intermediates of these processes, are highly sensitive to UV light; thus, safe analyses of these processes in humans are currently beyond the reach of even the most modern ocular imaging modalities.MethodsWe present a compact, 2-photon-excited fluorescence scanning laser ophthalmoscope and spectrally resolved images of the human retina based on 2-photon excitation (TPE) with near-infrared light. A custom Er:fiber laser with integrated pulse selection, along with intelligent postprocessing of data, enables excitation with low laser power and precise measurement of weak signals.ResultsWe demonstrate spectrally resolved TPE fundus images of human subjects. Comparison of TPE data between human and mouse models of retinal diseases revealed similarity with mouse models that rapidly accumulate bisretinoid condensation products. Thus, visual cycle intermediates and toxic byproducts of this metabolic pathway can be measured and quantified by TPE imaging.ConclusionOur work establishes a TPE instrument and measurement method for noninvasive metabolic assessment of the human retina. This approach opens the possibility for monitoring eye diseases in the earliest stages before structural damage to the retina occurs.FundingNIH, Research to Prevent Blindness, Foundation for Polish Science, European Regional Development Fund, Polish National Agency for Academic Exchange, and Polish Ministry of Science and Higher Education.


Subject(s)
Ophthalmoscopes , Optical Imaging , Retina , Retinal Diseases , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Knockout , Middle Aged , Retina/diagnostic imaging , Retina/metabolism , Retinal Diseases/diagnostic imaging , Retinal Diseases/genetics , Retinal Diseases/metabolism
8.
Transl Vis Sci Technol ; 10(2): 11, 2021 02 05.
Article in English | MEDLINE | ID: mdl-34003895

ABSTRACT

Purpose: Compare results obtained using infrared two-photon microperimetry (2PM-IR) with conventional visual function tests in healthy subjects of varying ages with and without simulated media opacities. Methods: Subjects from two separate cohort studies completed cone contrast threshold (CCT) testing, conventional microperimetry, visible light microperimetry from a novel device (2PM-Vis), and infrared two-photon microperimetry. The first cohort study, which consisted of six healthy volunteers (23 to 29 years of age), evaluated the effects of simulated media opacities on visual performance testing. Subjects underwent testing on four visual function devices nine separate times under the following conditions: no filter, red filter, green filter, blue filter, light brown filter, dark brown filter, polarized black filter (0° rotation), and polarized black filter (90° rotation). Subjects subsequently performed 2PM-IR and 2PM-Vis testing without a filter in the mydriatic state. The second cohort study evaluated the effect of age on visual test performance in 42 healthy subjects split between two groups (ages 20-40 years and 60-80 years). Results: Retinal sensitivity measured by 2PM-IR demonstrated lower variability than all other devices relying on visible spectrum stimuli. Retinal sensitivity decreased proportionally with the transmittance of light through each filter. CCT scores and retinal sensitivity decreased with age in all testing modalities. Visible spectrum testing modalities demonstrated larger test result differences between young and old patient cohorts; this difference was inversely proportional to the wavelength of the visual function test. Conclusions: 2PM-IR mitigates media opacities that may mask small differences in retinal sensitivity when tested with conventional visual function testing devices. Translational Relevance: Conventional visual function tests that emit visible light may not detect differences in retinal function during the early stages of age-related diseases due to the confounding effects of cataracts. Infrared light, which has greater transmittance through ocular tissue, may reliably quantify retinal sensitivity and thereby detect degenerative changes early on.


Subject(s)
Visual Field Tests , Visual Fields , Adult , Cohort Studies , Humans , Retina/diagnostic imaging , Visual Acuity , Young Adult
9.
Biomed Opt Express ; 12(1): 462-479, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33659083

ABSTRACT

Two-photon vision is a phenomenon associated with the perception of short pulses of near-infrared radiation (900-1200 nm) as a visible light. It is caused by the nonlinear process of two-photon absorption by visual pigments. Here we present results showing the influence of pulse duration and repetition rate of short pulsed lasers on the visual threshold. We compared two-photon sensitivity maps of the retina obtained for subjects with normal vision using a cost-effective fiber laser (λc = 1028.4 nm, τp = 12.2 ps, Frep = 19.17 MHz) and a solid-state laser (λc = 1043.3 nm, τp = 0.253 ps, Frep = 62.65 MHz). We have shown that in accordance with the description of two-photon absorption, the average optical power required for two-photon vision for a fiber laser is 4 times greater than that for a solid-state laser. Mean sensitivity measured for the first one is 5.9 ± 2.8 dB lower than for the second but still 17 dB away from the safety limit, confirming that picosecond light sources can be successfully applied in microperimetry. This development would dramatically reduce the cost and complexity of future clinical devices.

10.
Retina ; 41(6): 1302-1308, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33323904

ABSTRACT

PURPOSE: Human photoreceptors are sensitive to infrared light (IR). This sensitivity can be used as a novel indicator of retinal function. Diabetic retinopathy patients were assessed using in vivo two-photon excitation and compared their scotopic IR threshold with that of healthy patients. METHODS: Sixty-two participants, 28 healthy and 34 with diabetic retinopathy, underwent a comprehensive eye examination, where visual acuity and contrast sensitivity were assessed. Infrared thresholds were measured in the fovea and parafovea following 30-minute dark adaptation. A two-photon excitation device was used with integrated pulsed laser light (1,045 nm) for sensitivity testing and scanning laser ophthalmoscopy for fundus imaging. RESULTS: The mean Snellen visual acuity of diabetic patients (6/7.7) was worse than that of the healthy patients (6/5.5), which was significantly different (P < 0.001). Disease patients had decreased contrast sensitivity, especially at 6 and 18 cycles/degree. The mean retinal sensitivity to IR light in eyes with diabetic retinopathy (11.6 ± 2.0 dB) was significantly (P < 0.001) lower than that in normal eyes (15.5 ± 1.3 dB). CONCLUSION: Compared with healthy control subjects, the IR light sensitivity of diabetic patients was significantly impaired. Two-photon measurements can be used in the assessment of retinal disease, but further studies are needed to validate IR light stimulation in various stages of diabetic retinopathy.


Subject(s)
Dark Adaptation/physiology , Diabetic Retinopathy/physiopathology , Infrared Rays , Photophobia/physiopathology , Photoreceptor Cells/physiology , Visual Acuity , Diabetic Retinopathy/diagnosis , Female , Fovea Centralis/diagnostic imaging , Fovea Centralis/physiopathology , Humans , Male , Middle Aged , Ophthalmoscopy/methods , Photophobia/diagnosis , Pilot Projects , Visual Field Tests/methods
11.
Proc Natl Acad Sci U S A ; 117(36): 22532-22543, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32848058

ABSTRACT

High-resolution imaging techniques capable of detecting identifiable endogenous fluorophores in the eye along with genetic testing will dramatically improve diagnostic capabilities in the ophthalmology clinic and accelerate the development of new treatments for blinding diseases. Two-photon excitation (TPE)-based imaging overcomes the filtering of ultraviolet light by the lens of the human eye and thus can be utilized to discover defects in vitamin A metabolism during the regeneration of the visual pigments required for the detection of light. Combining TPE with fluorescence lifetime imaging (FLIM) and spectral analyses offers the potential of detecting diseases of the retina at earlier stages before irreversible structural damage has occurred. The main barriers to realizing the benefits of TPE for imaging the human retina arise from concerns about the high light exposure typically needed for informative TPE imaging and the requirement to correlate the ensuing data with different states of health and disease. To overcome these hurdles, we improved TPE efficiency by controlling temporal properties of the excitation light and employed phasor analyses to FLIM and spectral data in mouse models of retinal diseases. Modeling of retinal photodamage revealed that plasma-mediated effects do not play a role and that melanin-related thermal effects are mitigated by reducing pulse repetition frequency. By using noninvasive TPE imaging we identified molecular components of individual granules in the retinal pigment epithelium and present their analytical characteristics.


Subject(s)
Biopsy/methods , Optical Imaging/methods , Retina/diagnostic imaging , Animals , Disease Models, Animal , Fluorescent Dyes , Mice , Mice, Inbred C57BL , Retina/chemistry , Retinal Diseases/diagnostic imaging , Retinal Pigment Epithelium/chemistry , Retinal Pigment Epithelium/diagnostic imaging
12.
Transl Vis Sci Technol ; 9(8): 7, 2020 07.
Article in English | MEDLINE | ID: mdl-32855854

ABSTRACT

Purpose: The eye can see pulsed near-infrared (IR) radiation with the color corresponding to half of the wavelength used. Until recently, the technology required for measuring IR vision was confined to optical laboratories and was not studied clinically. The current investigation sought to determine the values for IR thresholds in a healthy population. Methods: IR-light threshold was measured in 45 healthy participants, aged from 21 to 70 years. Ten patients with retinal pathology were included for comparison. Ocular media clarity was assessed with a straylight parameter. The sensitivity of dark-adapted eyes (expressed on a 0-26 dB scale) were tested using an IR microperimeter. The device consists of a femtosecond laser that emits 1045 nm light to project a stimulus at the retina. Results: All participants were able to see the IR stimulus, which they perceived as green, and all performed the test. Measurements at seven locations revealed lower sensitivity at the fovea (15.5 dB) than in paracentral regions (18.2 dB). We noted a significant straylight increase with age. Although, in our study population, it was only a slight, -0.18 dB decline per decade of the average IR-sensitivity. The retinal-pathology group demonstrated impaired sensitivity to IR light. Conclusions: We showed that IR-light sensitivity does not significantly decrease with age despite a straylight increase. A reference level for the IR threshold was proposed. The application of IR-light microperimetry can be extended to the assessment of retinal pathology. Translational Relevance: IR-light microperimetry could be applied clinically to measure visual function.


Subject(s)
Retina , Visual Field Tests , Adult , Aged , Fovea Centralis , Humans , Middle Aged , Vision, Ocular , Young Adult
13.
J Biol Chem ; 294(50): 19137-19154, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31694912

ABSTRACT

Photoisomerization of the 11-cis-retinal chromophore of rod and cone visual pigments to an all-trans-configuration is the initiating event for vision in vertebrates. The regeneration of 11-cis-retinal, necessary for sustained visual function, is an endergonic process normally conducted by specialized enzyme systems. However, 11-cis-retinal also can be formed through reverse photoisomerization from all-trans-retinal. A nonvisual opsin known as retinal pigment epithelium (RPE)-retinal G-protein-coupled receptor (RGR) was previously shown to mediate visual chromophore regeneration in photic conditions, but conflicting results have cast doubt on its role as a photoisomerase. Here, we describe high-level production of 11-cis-retinal from RPE membranes stimulated by illumination at a narrow band of wavelengths. This activity was associated with RGR and enhanced by cellular retinaldehyde-binding protein (CRALBP), which binds the 11-cis-retinal produced by RGR and prevents its re-isomerization to all-trans-retinal. The activity was recapitulated with cells heterologously expressing RGR and with purified recombinant RGR. Using an RGR variant, K255A, we confirmed that a Schiff base linkage at Lys-255 is critical for substrate binding and isomerization. Single-cell RNA-Seq analysis of the retina and RPE tissue confirmed that RGR is expressed in human and bovine RPE and Müller glia, whereas mouse RGR is expressed in RPE but not in Müller glia. These results provide key insights into the mechanisms of physiological retinoid photoisomerization and suggest a novel mechanism by which RGR, in concert with CRALBP, regenerates the visual chromophore in the RPE under sustained light conditions.


Subject(s)
Retinal Pigment Epithelium/chemistry , Retinaldehyde/biosynthesis , Animals , Cattle , Eye Proteins/genetics , Eye Proteins/metabolism , Humans , Mice , Models, Molecular , Molecular Structure , RNA-Seq , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Retinal Pigment Epithelium/metabolism , Retinaldehyde/chemistry , Stereoisomerism
14.
Biomed Opt Express ; 10(9): 4551-4567, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31565509

ABSTRACT

Microperimetry is a subjective ophthalmologic test used to assess retinal function at various specific and focal locations of the visual field. Historically, visible light has been described as ranging from 400 to 720 nm. However, we previously demonstrated that infra-red light can initiate visual transduction in rod photoreceptors by a mechanism of two-photon absorption by visual pigments. Here we introduce a newly designed and constructed two-photon microperimeter. We provide for the first time evidence of the presence of a nonlinear process occurring in the human retina based on psychophysical tests using newly developed instrumentation. Since infra-red light penetrates the aged front of the eye better than visible light, it has the potential for improved functional diagnostics in patients with age-related visual disorders.

15.
Neuroscience ; 416: 100-108, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31400484

ABSTRACT

Two-photon vision arises from the perception of pulsed infrared (IR) laser light as color corresponding to approximately half of the laser wavelength. The physical process responsible for two-photon vision in rods has been delineated and verified experimentally only recently. Here, we sought to determine whether IR light can also be perceived by mammalian cone photoreceptors via a similar activation mechanism. To investigate selectively mammalian cone signaling in mice, we used animals with disabled rod signal transduction. We found that, contrary to the expected progressive sensitivity decrease based on the one-photon cone visual pigment spectral template, the sensitivity of mouse cone photoreceptors decreases only up to 800 nm and then increases at 900 nm and 1000 nm. Similarly, in experiments with the parafoveal region of macaque retinas, we found that the spectral sensitivity of primate cones diverged above the predicted one-photon spectral sensitivity template beyond 800 nm. In both cases, efficient detection of IR light was dependent on minimizing the dispersion of the ultrashort light pulses, indicating a non-linear two-photon activation process. Together, our studies demonstrate that mammalian cones can be activated by near IR light by a nonlinear two-photon excitation. Our results pave the way for the creation of a two-photon IR-based ophthalmoscope for the simultaneous imaging and functional testing of human retinas as a novel tool for the diagnosis and treatment of a wide range of visual disorders.


Subject(s)
Light , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Vision, Ocular/physiology , Animals , Mice, Inbred C57BL , Photons , Signal Transduction/physiology
16.
Methods Mol Biol ; 1834: 333-343, 2019.
Article in English | MEDLINE | ID: mdl-30324453

ABSTRACT

Two-photon excitation microscopy is perfectly suited for imaging deep into the retina due to its use of infrared (IR) wavelengths to excite endogenous fluorophores such as vitamin A-derived retinoids present in this tissue. Furthermore, two-photon excitation occurs only around a small focal volume, and scattered IR photons cannot excite retinal chromophores. These characteristics contribute to subcellular resolution and low noise of images obtained from deep within retinal layers. Here we describe how to customize a two-photon microscope for noninvasive imaging of the retina and retinal pigment epithelium (RPE) in the mouse eye, along with detailed instructions for mouse handling and retinal imaging, and we provide examples of mouse retinal two-photon microscopy data.


Subject(s)
Microscopy , Retina/cytology , Retina/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Animals , Biomarkers , Fluorescent Antibody Technique , Mice , Microscopy/instrumentation , Microscopy/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods
17.
JCI Insight ; 3(17)2018 09 06.
Article in English | MEDLINE | ID: mdl-30185665

ABSTRACT

Noninvasive imaging of visual system components in vivo is critical for understanding the causal mechanisms of retinal diseases and for developing therapies for their treatment. However, ultraviolet light needed to excite endogenous fluorophores that participate in metabolic processes of the retina is highly attenuated by the anterior segment of the human eye. In contrast, 2-photon excitation fluorescence imaging with pulsed infrared light overcomes this obstacle. Reducing retinal exposure to laser radiation remains a major barrier in advancing this technology to studies in humans. To increase fluorescence intensity and reduce the requisite laser power, we modulated ultrashort laser pulses with high-order dispersion compensation and applied sensorless adaptive optics and custom image recovery software and observed an over 300% increase in fluorescence of endogenous retinal fluorophores when laser pulses were shortened from 75 fs to 20 fs. No functional or structural changes to the retina were detected after exposure to 2-photon excitation imaging light with 20-fs pulses. Moreover, wide bandwidth associated with short pulses enables excitation of multiple fluorophores with different absorption spectra and thus can provide information about their relative changes and intracellular distribution. These data constitute a substantial advancement for safe 2-photon fluorescence imaging of the human eye.


Subject(s)
Lasers , Ophthalmoscopy/methods , Photons , Retina/diagnostic imaging , Retinal Diseases/diagnostic imaging , ATP-Binding Cassette Transporters/genetics , Alcohol Oxidoreductases/genetics , Animals , Disease Models, Animal , Female , Humans , Infrared Rays , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Optical Imaging/methods , Retina/pathology , Retinal Diseases/genetics , Retinal Diseases/pathology , cis-trans-Isomerases/genetics
18.
Mol Pharmacol ; 94(4): 1132-1144, 2018 10.
Article in English | MEDLINE | ID: mdl-30018116

ABSTRACT

Continuous regeneration of the 11-cis-retinal visual chromophore from all-trans-retinal is critical for vision. Insufficiency of 11-cis-retinal arising from the dysfunction of key proteins involved in its regeneration can impair retinal health, ultimately leading to loss of human sight. Delayed recovery of visual sensitivity and night blindness caused by inadequate regeneration of the visual pigment rhodopsin are typical early signs of this condition. Excessive concentrations of unliganded, constitutively active opsin and increased levels of all-trans-retinal and its byproducts in photoreceptors also accelerate retinal degeneration after light exposure. Exogenous 9-cis-retinal iso-chromophore can reduce the toxicity of ligand-free opsin but fails to prevent the buildup of retinoid photoproducts when their clearance is defective in human retinopathies, such as Stargardt disease or age-related macular degeneration. Here we evaluated the effect of a locked chromophore analog, 11-cis-6-membered ring-retinal against bright light-induced retinal degeneration in Abca4-/-Rdh8-/- mice. Using in vivo imaging techniques, optical coherence tomography, scanning laser ophthalmoscopy, and two-photon microscopy, along with in vitro histologic analysis of retinal morphology, we found that treatment with 11-cis-6-membered ring-retinal before light stimulation prevented rod and cone photoreceptor degradation and preserved functional acuity in these mice. Moreover, additive accumulation of 11-cis-6-membered ring-retinal measured in the eyes of these mice by quantitative liquid chromatography-mass spectrometry indicated stable binding of this retinoid to opsin. Together, these results suggest that eliminating excess of unliganded opsin can prevent light-induced retinal degeneration in Abca4-/-Rdh8-/- mice.


Subject(s)
Protective Agents/pharmacology , Retina/drug effects , Retinal Degeneration/drug therapy , ATP-Binding Cassette Transporters/metabolism , Alcohol Oxidoreductases/metabolism , Animals , Diterpenes , Light , Macular Degeneration/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Opsins/metabolism , Retina/metabolism , Retinaldehyde/metabolism , Retinoids/metabolism
19.
Biomed Opt Express ; 8(11): 5228-5242, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29188116

ABSTRACT

Ultrafast lasers have potential use in ophthalmology for diagnoses through non-invasive imaging as well as for surgical therapies or for evaluating pharmacological therapies. New ultrafast laser sources, operating at 1.07 µm and sub-40 fs pulse durations, offer exciting possibilities in multiphoton imagining of the retina as the bulk of the eye is relatively transparent to this wavelength, three-photon excitation is not absorbed by DNA, and this wavelength has a greater penetration depth compared to the commonly used 800 nm Ti:Sapphire laser. In this work, we present the first epi-direction detected cross-section and depth-resolved images of unstained isolated retinas obtained using multiphoton microscopy with an ultrafast fiber laser centered at 1.07 µm and a ~38 fs pulse duration. Spectral and temporal characterization of the autofluorescence signals show two distinct regions; the first one from the nerve fiber layer to the inner receptor layer, and the second being the retinal pigmented epithelium and choroid.

20.
Article in English | MEDLINE | ID: mdl-28989217

ABSTRACT

In this work, we present all epi-direction detected images of an unstained mouse retina using multiphoton microscopy with a sub-50 fs Yb-fiber laser centered at 1.07 µm. This wavelength is particularly interesting as the fundamental wavelength is transparent to the anterior segment of the eye and the higher harmonics are above DNA-damaging UV wavelengths. We present a characterization of the multimodal signals emitted from the different retinal layers, as well as from the choroid and the sclera. By characterizing native multiphoton signals from the retina, we move closer to having Yb-fiber considered for in vivo diagnosis of retinal disease through multiphoton microscopy as well as for corrective therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...