Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Rheumatology (Oxford) ; 60(12): 5820-5826, 2021 12 01.
Article in English | MEDLINE | ID: mdl-33590875

ABSTRACT

OBJECTIVES: Interleukin 11 (IL11) is highly upregulated in skin and lung fibroblasts from patients with systemic sclerosis (SSc). Here we tested whether IL11 is mechanistically linked with activation of human dermal fibroblasts (HDFs) from patients with SSc or controls. METHODS: We measured serum IL11 levels in volunteers and patients with early diffuse SSc and manipulated IL11 signalling in HDFs using gain- and loss-of-function approaches that we combined with molecular and cellular phenotyping. RESULTS: In patients with SSc, serum IL11 levels are elevated as compared with healthy controls. All transforming growth factor beta (TGFß) isoforms induced IL11 secretion from HDFs, which highly express IL11 receptor α-subunit and the glycoprotein 130 (gp130) co-receptor, suggestive of an autocrine loop of IL11 activity in HDFs. IL11 stimulated ERK activation in HDFs and resulted in HDF-to-myofibroblast transformation and extracellular matrix secretion. The pro-fibrotic action of IL11 in HDFs appeared unrelated to STAT3 activity, independent of TGFß upregulation and was not associated with phosphorylation of SMAD2/3. Inhibition of IL11 signalling using either a neutralizing antibody against IL11 or siRNA against IL11RA reduced TGFß-induced HDF proliferation, matrix production and cell migration, which was phenocopied by pharmacological inhibition of ERK. CONCLUSIONS: These data reveal that autocrine IL11-dependent ERK activity alone or downstream of TGFß stimulation promotes fibrosis phenotypes in dermal fibroblasts and suggest IL11 as a potential therapeutic target in SSc.


Subject(s)
Gene Expression Regulation , Interleukin-11 Receptor alpha Subunit/genetics , Interleukin-11/blood , MAP Kinase Signaling System/genetics , RNA/genetics , Scleroderma, Systemic/blood , Skin/pathology , Biomarkers/blood , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Interleukin-11 Receptor alpha Subunit/biosynthesis , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Signal Transduction
2.
Front Immunol ; 11: 1602, 2020.
Article in English | MEDLINE | ID: mdl-32849542

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune disease characterized by excessive fibrosis of skin and internal organs, and vascular dysfunction. Association of T and B cell subsets has been reported in SSc; however, there is lack of systematic studies of functional relations between immune cell subsets in this disease. This lack of mechanistic knowledge hampers targeted intervention. In the current study we sought to determine differential immune cell composition and their interactions in peripheral blood of SSc patients. Mononuclear cells from blood of SSc patients (n = 20) and healthy controls (n = 10) were analyzed by mass cytometry using a 36-marker (cell surface and intracellular) panel. Transcriptome analysis (m-RNA sequencing) was performed on sorted T and B cell subsets. Unsupervised clustering analysis revealed significant differences in the frequencies of T and B cell subsets in patients. Correlation network analysis highlighted an overall dysregulated immune architecture coupled with domination of inflammatory senescent T cell modules in SSc patients. Transcriptome analysis of sorted immune cells revealed an activated phenotype of CD4 and mucosal associated invariant T (MAIT) cells in patients, accompanied by increased expression of inhibitory molecules, reminiscent of phenotype exhibited by functionally adapted, exhausted T cells in response to chronic stimulation. Overall, this study provides an in-depth analysis of the systemic immunome in SSc, highlighting the potential pathogenic role of inflammation and chronic stimulation-mediated "functional adaptation" of immune cells.


Subject(s)
Disease Susceptibility/immunology , Scleroderma, Systemic/etiology , Adult , Autoantibodies/immunology , Autoimmunity , Biomarkers , Computational Biology/methods , Female , Gene Expression Profiling , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Middle Aged , Scleroderma, Systemic/diagnosis , Transcriptome , Young Adult
3.
FASEB J ; 34(9): 11802-11815, 2020 09.
Article in English | MEDLINE | ID: mdl-32656894

ABSTRACT

Repetitive pulmonary injury causes fibrosis and inflammation that underlies chronic lung diseases such as idiopathic pulmonary fibrosis (IPF). Interleukin 11 (IL11) is important for pulmonary fibroblast activation but the contribution of fibroblast-specific IL11 activity to lung fibro-inflammation is not known. To address this gap in knowledge, we generated mice with loxP-flanked Il11ra1 and deleted the IL11 receptor in adult fibroblasts (CKO mice). In the bleomycin (BLM) model of lung fibrosis, CKO mice had reduced fibrosis, lesser fibroblast ERK activation, and diminished immune cell STAT3 phosphorylation. Following BLM injury, acute inflammation in CKO mice was similar to controls but chronic immune infiltrates and pro-inflammatory gene activation, including NF-kB phosphorylation, were notably reduced. Therapeutic prevention of IL11 activity with neutralizing antibodies mirrored the effects of genetic deletion of Il11ra1 in fibroblasts. These data reveal a new function for IL11 in pro-inflammatory lung fibroblasts and highlight the important contribution of the stroma to inflammation in pulmonary disease.


Subject(s)
Fibroblasts/metabolism , Inflammation/metabolism , Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-11/metabolism , Pulmonary Fibrosis/metabolism , Animals , Bleomycin , Cells, Cultured , Chronic Disease , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Inflammation/genetics , Interleukin-11/pharmacology , Interleukin-11 Receptor alpha Subunit/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NF-kappa B/metabolism , Phosphorylation , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
6.
Gastroenterology ; 157(3): 777-792.e14, 2019 09.
Article in English | MEDLINE | ID: mdl-31078624

ABSTRACT

BACKGROUND & AIMS: We studied the role of interleukin 11 (IL11) signaling in the pathogenesis of nonalcoholic steatohepatitis (NASH) using hepatic stellate cells (HSCs), hepatocytes, and mouse models of NASH. METHODS: We stimulated mouse and human fibroblasts, HSCs, or hepatocytes with IL11 and other cytokines and analyzed them by imaging, immunoblot, and functional assays and enzyme-linked immunosorbent assays. Mice were given injections of IL11. Mice with disruption of the interleukin 11 receptor subunit alpha1 gene (Il11ra1-/-) mice and Il11ra1+/+ mice were fed a high-fat methionine- and choline-deficient diet (HFMCD) or a Western diet with liquid fructose (WDF) to induce steatohepatitis; control mice were fed normal chow. db/db mice were fed with methionine- and choline-deficient diet for 12 weeks and C57BL/6 NTac were fed with HFMCD for 10 weeks or WDF for 16 weeks. Some mice were given intraperitoneal injections of anti-IL11 (X203), anti-IL11RA (X209), or a control antibody at different timepoints on the diets. Livers and blood were collected; blood samples were analyzed by biochemistry and liver tissues were analyzed by histology, RNA sequencing, immunoblots, immunohistochemistry, hydroxyproline, and mass cytometry time of flight assays. RESULTS: HSCs incubated with cytokines produced IL11, resulting in activation (phosphorylation) of ERK and expression of markers of fibrosis. Livers of mice given injections of IL11 became damaged, with increased markers of fibrosis, hepatocyte cell death and inflammation. Following the HFMCD or WDF, livers from Il11ra1-/- mice had reduced steatosis, fibrosis, expression of markers of inflammation and steatohepatitis, compared to and Il11ra1+/+ mice on the same diets. Depending on the time of administration of anti-IL11 or anti-IL11RA antibodies to wild-type mice on the HFMCD or WDF, or to db/db mice on the methionine and choline-deficient diet, the antibodies prevented, stopped, or reversed development of fibrosis and steatosis. Blood samples from Il11ra1+/+ mice fed the WDF and given injections of anti-IL11 or anti-IL11RA, as well as from Il11ra1-/- mice fed WDF, had lower serum levels of lipids and glucose than mice not injected with antibody or with disruption of Il11ra1. CONCLUSIONS: Neutralizing antibodies that block IL11 signaling reduce fibrosis, steatosis, hepatocyte death, inflammation and hyperglycemia in mice with diet-induced steatohepatitis. These antibodies also improve the cardiometabolic profile of mice and might be developed for the treatment of NASH.


Subject(s)
Antibodies, Neutralizing/pharmacology , Hepatitis/prevention & control , Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-11/antagonists & inhibitors , Liver Cirrhosis, Experimental/prevention & control , Liver/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Cell Death/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatitis/genetics , Hepatitis/metabolism , Hepatitis/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammation Mediators/metabolism , Interleukin-11/metabolism , Interleukin-11 Receptor alpha Subunit/deficiency , Interleukin-11 Receptor alpha Subunit/genetics , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction/drug effects , THP-1 Cells
7.
JCI Insight ; 52019 03 26.
Article in English | MEDLINE | ID: mdl-30912766

ABSTRACT

Drug refractory epilepsy (RE) is a chronic neurological disease with varied etiology that represents a group of patients whose seizures do not respond to anti-epileptic drugs. The immune system may have a role in seizure and epilepsy development, but the specific mechanisms of inflammation that lead to epileptogenesis and contribute to RE are unknown. Here, we used mass cytometry to comprehensively study the immune system of pediatric patients with RE and compared their immune profile and function with patients with age-matched autoimmune encephalitis (AIE) and healthy controls. Patients with RE and AIE displayed similar immune profiles overall, with changes in CD4+ and CD8+ T-cell subsets and an unbalance toward pro-inflammatory IL-17 production. In addition, patients with RE uniquely showed an altered balance in natural killer cell subsets. A systems level intercellular network analysis identified rewiring of the immune system leading to loss of inhibitory/regulatory intercellular connections and emergence of pro-inflammatory pathogenic functions in neuro-inflammatory immune-cell networks in patients with AIE and RE. These data underscore the contribution of systemic inflammation to the pathogenesis of seizures and epileptogenesis and have direct translational implications in advancing diagnostics and therapeutics design.


Subject(s)
Drug Resistant Epilepsy/immunology , Drug Resistant Epilepsy/metabolism , Inflammation/immunology , Interleukin-17/metabolism , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Child, Preschool , Encephalitis/immunology , Hashimoto Disease/immunology , Humans , Immunity, Cellular , Killer Cells, Natural , Seizures , T-Lymphocyte Subsets
8.
J Autoimmun ; 94: 90-98, 2018 11.
Article in English | MEDLINE | ID: mdl-30077426

ABSTRACT

T-cell resilience is critical to the immune pathogenesis of human autoimmune arthritis. Autophagy is essential for memory T cell generation and associated with pathogenesis in rheumatoid arthritis (RA). Our aim here was to delineate the role and molecular mechanism of autophagy in resilience and persistence of pathogenic T cells from autoimmune arthritis. We demonstrated "Autophagic memory" as elevated autophagy levels in CD4+ memory T cells compared to CD4+ naive T cells and in Jurkat Human T cell line trained with starvation stress. We then showed increased levels of autophagy in pathogenic CD4+ T cells subsets from autoimmune arthritis patients. Using RNA-sequencing, transcription factor gene regulatory network and methylation analyses we identified MYC as a key regulator of autophagic memory. We validated MYC levels using qPCR and further demonstrated that inhibiting MYC increased autophagy. The present study proposes the novel concept of autophagic memory and suggests that autophagic memory confers metabolic advantage to pathogenic T cells from arthritis and supports its resilience and long term survival. Particularly, suppression of MYC imparted the heightened autophagy levels in pathogenic T cells. These studies have a direct translational valency as they identify autophagy and its metabolic controllers as a novel therapeutic target.


Subject(s)
Arthritis, Juvenile/immunology , Arthritis, Rheumatoid/immunology , Autophagy/immunology , Gene Regulatory Networks/immunology , Immunologic Memory , Proto-Oncogene Proteins c-myc/genetics , Adolescent , Adult , Animals , Arthritis, Juvenile/genetics , Arthritis, Juvenile/pathology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Autophagy/genetics , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Case-Control Studies , DNA Methylation , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Jurkat Cells , Male , Mice , Mice, Inbred DBA , Oxadiazoles/pharmacology , Primary Cell Culture , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , Transcription Factors/classification , Transcription Factors/genetics , Transcription Factors/immunology
9.
Front Immunol ; 8: 1462, 2017.
Article in English | MEDLINE | ID: mdl-29163529

ABSTRACT

NLRP10 is a nucleotide-binding oligomerization domain-like receptor that functions as an intracellular pattern recognition receptor for microbial products. Here, we generated a Nlrp10-/- mouse to delineate the role of NLRP10 in the host immune response and found that Nlrp10-/- dendritic cells (DCs) elicited sub-optimal IFNγ production by antigen-specific CD4+ T cells compared to wild-type (WT) DCs. In response to T-cell encounter, CD40 ligation or Toll-like receptor 9 stimulation, Nlrp10-/- DCs produced low levels of IL-12, due to a substantial decrease in NF-κB activation. Defective IL-12 production was also evident in vivo and affected IFNγ production by CD4+ T cells. Upon Mycobacterium tuberculosis (Mtb) infection, Nlrp10-/- mice displayed diminished T helper 1-cell responses and increased bacterial growth compared to WT mice. These data indicate that NLRP10-mediated IL-12 production by DCs is critical for IFNγ induction in T cells and contributes to promote the host defense against Mtb.

10.
Sci Immunol ; 2(9)2017 Mar.
Article in English | MEDLINE | ID: mdl-28707004

ABSTRACT

Mycobacterium tuberculosis (Mtb) executes a plethora of immune-evasive mechanisms, which contribute to its pathogenesis, limited efficacy of current therapy, and the emergence of drug-resistant strains. This has led to resurgence in attempts to develop new therapeutic strategies/targets against tuberculosis (TB). We show that Mtb down-regulates sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, in monocytes/macrophages, TB animal models, and TB patients with active disease. Activation of SIRT1 reduced intracellular growth of drug-susceptible and drug-resistant strains of Mtb and induced phagosome-lysosome fusion and autophagy in a SIRT1-dependent manner. SIRT1 activation dampened Mtb-mediated persistent inflammatory responses via deacetylation of RelA/p65, leading to impaired binding of RelA/p65 on the promoter of inflammatory genes. In Mtb-infected mice, the use of SIRT1 activators ameliorated lung pathology, reduced chronic inflammation, and enhanced efficacy of anti-TB drug. Mass cytometry-based high-dimensional analysis revealed that SIRT1 activation mediated modulation of lung myeloid cells in Mtb-infected mice. Myeloid cell-specific SIRT1 knockout mice display increased inflammatory responses and susceptibility to Mtb infection. Collectively, these results provide a link between SIRT1 activation and TB pathogenesis and indicate a potential of SIRT1 activators in designing an effective and clinically relevant host-directed therapies for TB.

12.
Elife ; 62017 05 18.
Article in English | MEDLINE | ID: mdl-28518056

ABSTRACT

MHC class I-related molecule MR1 presents riboflavin- and folate-related metabolites to mucosal-associated invariant T cells, but it is unknown whether MR1 can present alternative antigens to other T cell lineages. In healthy individuals we identified MR1-restricted T cells (named MR1T cells) displaying diverse TCRs and reacting to MR1-expressing cells in the absence of microbial ligands. Analysis of MR1T cell clones revealed specificity for distinct cell-derived antigens and alternative transcriptional strategies for metabolic programming, cell cycle control and functional polarization following antigen stimulation. Phenotypic and functional characterization of MR1T cell clones showed multiple chemokine receptor expression profiles and secretion of diverse effector molecules, suggesting functional heterogeneity. Accordingly, MR1T cells exhibited distinct T helper-like capacities upon MR1-dependent recognition of target cells expressing physiological levels of surface MR1. These data extend the role of MR1 beyond microbial antigen presentation and indicate MR1T cells are a normal part of the human T cell repertoire.


Subject(s)
Antigen Presentation , Antigens/immunology , Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Minor Histocompatibility Antigens/metabolism , T-Lymphocytes/immunology , Cell Line , Cytokines/metabolism , Humans , Receptors, Chemokine/biosynthesis
13.
Sci Rep ; 6: 35845, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27775039

ABSTRACT

Access to point-of-care (POC), rapid, inexpensive, sensitive, and instrument-free tests for the diagnosis of tuberculosis (TB) remains a major challenge. Here, we report a simple and low-cost microchip-based TB ELISA (MTBE) platform for the detection of anti-mycobacterial IgG in plasma samples in less than 15 minutes. The MTBE employs a flow-less, magnet-actuated, bead-based ELISA for simultaneous detection of IgG responses against multiple mycobacterial antigens. Anti-trehalose 6,6'-dimycolate (TDM) IgG responses were the strongest predictor for differentiating active tuberculosis (ATB) from healthy controls (HC) and latent tuberculosis infections (LTBI). The TDM-based MTBE demonstrated superior sensitivity compared to sputum microscopy (72% vs. 56%) with 80% and 63% positivity among smear-positive and smear-negative confirmed ATB samples, respectively. Receiver operating characteristic analysis indicated good accuracy for differentiating ATB from HC (AUC = 0.77). Thus, TDM-based MTBE can be potentially used as a screening device for rapid diagnosis of active TB at the POC.

14.
Sci Transl Med ; 6(263): 263ra159, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25411472

ABSTRACT

The global burden of tuberculosis (TB) morbidity and mortality remains immense. A potential new approach to TB therapy is to augment protective host immune responses. We report that the antidiabetic drug metformin (MET) reduces the intracellular growth of Mycobacterium tuberculosis (Mtb) in an AMPK (adenosine monophosphate-activated protein kinase)-dependent manner. MET controls the growth of drug-resistant Mtb strains, increases production of mitochondrial reactive oxygen species, and facilitates phagosome-lysosome fusion. In Mtb-infected mice, use of MET ameliorated lung pathology, reduced chronic inflammation, and enhanced the specific immune response and the efficacy of conventional TB drugs. Moreover, in two separate human cohorts, MET treatment was associated with improved control of Mtb infection and decreased disease severity. Collectively, these data indicate that MET is a promising candidate host-adjunctive therapy for improving the effective treatment of TB.


Subject(s)
Metformin/therapeutic use , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Humans , Metformin/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/growth & development , Reactive Oxygen Species/metabolism , Tuberculosis/immunology
15.
Nat Commun ; 5: 3866, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24832684

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize conserved bacterial antigens derived from riboflavin precursors, presented by the non-polymorphic MHC class I-like molecule MR1. Here we show that human MAIT cells are remarkably oligoclonal in both the blood and liver, display high inter-individual homology and exhibit a restricted length CDR3ß domain of the TCRVß chain. We extend this analysis to a second sub-population of MAIT cells expressing a semi-invariant TCR conserved between individuals. Similar to 'conventional' MAIT cells, these lymphocytes react to riboflavin-synthesizing microbes in an MR1-restricted manner and infiltrate solid tissues. Both MAIT cell types release Th0, Th1 and Th2 cytokines, and sCD40L in response to bacterial infection, show cytotoxic capacity against infected cells and promote killing of intracellular bacteria, thus suggesting important protective and immunoregulatory functions of these lymphocytes.


Subject(s)
Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , Genes, T-Cell Receptor alpha/genetics , Genes, T-Cell Receptor beta/genetics , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocyte Subsets/metabolism , Adult , Humans , Sequence Analysis, Protein , T-Lymphocytes/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...