Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
World Neurosurg ; 185: 246-253, 2024 May.
Article in English | MEDLINE | ID: mdl-38431211

ABSTRACT

The definition of complete resection in neurosurgery depends on tumor type, surgical aims, and postoperative investigations, directly guiding the choice of intraoperative tools. Most common tumor types present challenges in achieving complete resection due to their infiltrative nature and anatomical constraints. The development of adjuvant treatments has altered the balance between oncological aims and surgical risks. We review local recurrence associated with incomplete resection based on different definitions and emphasize the importance of achieving maximal safe resection in all tumor types. Intraoperative techniques that aid surgeons in identifying tumor boundaries are used in practice and in preclinical or clinical research settings. They encompass both conservative and invasive techniques. Among them, morphological tools include imaging modalities such as intraoperative magnetic resonance imaging, ultrasound, and optical coherence tomography. Fluorescence-guided surgery, mainly using 5-aminolevulinic acid, enhances gross total resection in glioblastomas. Nuclear methods, including positron emission tomography probes, provide tumor detection based on beta or gamma emission after a radiotracer injection. Mass spectrometry- and spectroscopy-based methods offer molecular insights. The adoption of these techniques depends on their relevance, effectiveness, and feasibility. With the emergence of positron emission tomography imaging for use in recurrence benchmarking, positron emission tomography probes raise particular interest among those tools. While all such tools provide valuable insights, their clinical benefits need further evaluation.


Subject(s)
Brain Neoplasms , Neurosurgical Procedures , Humans , Neurosurgical Procedures/methods , Brain Neoplasms/surgery , Brain Neoplasms/diagnostic imaging , Surgery, Computer-Assisted/methods , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/surgery
2.
Mult Scler Relat Disord ; 79: 104928, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37657308

ABSTRACT

BACKGROUND: Tremor affects up to 25%-58% in multiple sclerosis (MS) population. Deep-brain stimulation (DBS) of the ventral-intermediate nucleus (VIM) of the thalamus is considered as a potential option following medical treatments. Long term DBS efficacy is not well known in these patients with a poor outcome mostly related to disease progression. OBJECTIVE: To report a large and retrospective study of thalamic DBS in MS tremor. METHODS: We conducted a large and retrospective study of patients with MS disabling and pharmacologically resistant upper limb tremor, who underwent thalamic DBS procedure from January 1992 to January 2015 in University Hospital of Henri Mondor, France. Demographic data, clinical assessment and activity daily living were collected. A three-month and twelve-month post-operative assessment with clinical and functional rating scales have been achieved, as well as long term follow-up for most patients. RESULTS: One hundred and four patients underwent DBS procedure. There were 71 female (68%) and 33 male (32%). At three-month post-operative assessment, 64% patients were improved clinically and functionally. Among these, 93% of patients kept a good efficacy at one-year post-operative assessment. Mean duration of follow-up for these patients was 6 years. CONCLUSION: We described a long-term sustained clinical and functional improvement in this large and retrospective report of thalamic DBS. This neuromodulation approach could be a therapeutic option for all severe upper extremity refractory tremor in MS patients.


Subject(s)
Deep Brain Stimulation , Multiple Sclerosis , Humans , Male , Female , Tremor/etiology , Tremor/therapy , Retrospective Studies , Follow-Up Studies , Ventral Thalamic Nuclei/surgery , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/methods , Multiple Sclerosis/complications , Multiple Sclerosis/therapy , Treatment Outcome
3.
Acta Neurochir (Wien) ; 165(10): 2769-2774, 2023 10.
Article in English | MEDLINE | ID: mdl-37269332

ABSTRACT

The authors report a rare case of most likely radiation-induced glioma (RIG) with epithelioid features and the presence of molecular features consistent with RIG. This occurred 70 years after craniofacial brachytherapy. Such a late development of radiation-induced glioblastoma (RIGBM) and the advanced age of presentation for an epithelioid glioblastoma are both unique in the literature. Despite not receiving the full course of adjuvant chemotherapy after surgery and radiotherapy, the patient displayed no signs of recurrence during a 5-year follow-up. RIGBM should be further studied to reveal potential unique clinical and molecular characteristics, as well as to better predict survival and treatment response.


Subject(s)
Brachytherapy , Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/therapy , Brain Neoplasms/surgery , Glioma/radiotherapy , Neoplasm Recurrence, Local/surgery
4.
Neurosci Biobehav Rev ; 130: 410-432, 2021 11.
Article in English | MEDLINE | ID: mdl-34437937

ABSTRACT

Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.


Subject(s)
Brain Injuries, Traumatic , Deep Brain Stimulation , Animals , Brain Injuries, Traumatic/therapy , Disease Models, Animal , Humans , Memory Disorders/therapy , Rodentia
5.
BMJ Open ; 11(6): e047492, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158304

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) of bilateral anteromedial subthalamic nucleus (amSTN) has been found to be helpful in a subset of patients with severe, chronic and treatment-refractory obsessive-compulsive disorder (OCD). Biomarkers may aid in patient selection and optimisation of this invasive treatment. In this trial, we intend to evaluate neurocognitive function related to STN and related biosignatures as potential biomarkers for STN DBS in OCD. METHODS AND ANALYSIS: Twenty-four subjects with treatment-refractory OCD will undergo open-label STN DBS. Structural/functional imaging, electrophysiological recording and neurocognitive assessment would be performed at baseline. The subjects would undergo a structured clinical assessment for 12 months postsurgery. A group of 24 healthy volunteers and 24 subjects with treatment-refractory OCD who receive treatment as usual would be recruited for comparison of biomarkers and treatment response, respectively. Baseline biomarkers would be evaluated as predictors of clinical response. Neuroadaptive changes would be studied through a reassessment of neurocognitive functioning, imaging and electrophysiological activity post DBS. ETHICS AND DISSEMINATION: The protocol has been approved by the National Institute of Mental Health and Neurosciences Ethics Committee. The study findings will be disseminated through peer-reviewed scientific journals and scientific meetings.


Subject(s)
Deep Brain Stimulation , Obsessive-Compulsive Disorder , Subthalamic Nucleus , Biomarkers , Follow-Up Studies , Humans , Obsessive-Compulsive Disorder/therapy , Treatment Outcome
6.
Front Hum Neurosci ; 15: 646268, 2021.
Article in English | MEDLINE | ID: mdl-33716700

ABSTRACT

Background: Maximum safe resection of infiltrative brain tumors in eloquent area is the primary objective in surgical neuro-oncology. This goal can be achieved with direct electrical stimulation (DES) to perform a functional mapping of the brain in patients awake intraoperatively. When awake surgery is not possible, we propose a pipeline procedure that combines advanced techniques aiming at performing a dissection that respects the anatomo-functional connectivity of the peritumoral region. This procedure can benefit from intraoperative monitoring with computerized tomography scan (iCT-scan) and brain shift correction. Associated with this intraoperative monitoring, the additional value of preoperative investigation combining brain mapping by navigated transcranial magnetic stimulation (nTMS) with various neuroimaging modalities (tractography and resting state functional MRI) has not yet been reported. Case Report: A 42-year-old left-handed man had increased intracranial pressure (IICP), left hand muscle deficit, and dysarthria, related to an infiltrative tumor of the right frontal lobe with large mass effect and circumscribed contrast enhancement in motor and premotor cortical areas. Spectroscopy profile and intratumoral calcifications on CT-scan suggested an WHO grade III glioma, later confirmed by histology. The aforementioned surgical procedure was considered, since standard awake surgery was not appropriate for this patient. In preoperative time, nTMS mapping of motor function (deltoid, first interosseous, and tibialis anterior muscles) was performed, combined with magnetic resonance imaging (MRI)-based tractography reconstruction of 6 neural tracts (arcuate, corticospinal, inferior fronto-occipital, uncinate and superior and inferior longitudinal fasciculi) and resting-state functional MRI connectivity (rs-fMRI) of sensorimotor and language networks. In intraoperative time, DES mapping was performed with motor evoked response recording and tumor resection was optimized using non-rigid image transformation of the preoperative data (nTMS, tractography, and rs-fMRI) to iCT data. Image guidance was updated with correction for brain shift and tissue deformation using biomechanical modeling taking into account brain elastic properties. This correction was done at crucial surgical steps, i.e., when tumor bulged through the craniotomy after dura mater opening and when approaching the presumed eloquent brain regions. This procedure allowed a total resection of the tumor region with contrast enhancement as well as a complete regression of IICP and dysarthria. Hand paresis remained stable with no additional deficit. Postoperative nTMS mapping confirmed the good functional outcome. Conclusion: This case report and technical note highlights the value of preoperative functional evaluation by nTMS updated intraoperatively with correction of brain deformation by iCT. This multimodal approach may become the optimized technique of reference for patients with brain tumors in eloquent areas that are unsuitable for awake brain surgery.

8.
Presse Med ; 48(12): 1507-1519, 2019 Dec.
Article in French | MEDLINE | ID: mdl-31767248

ABSTRACT

Vagus nerve stimulation (VNS) is an old, yet new, option for treatment-resistant depression. Despite several clinical trials over the last 15 years showing a consistent benefit-risk balance of the technic, VNS still struggles to find its place in our therapeutic algorithms. This is especially true in France, where only a few surgeries have been performed nationwide, all in the last year. The reasons behind this lag are manifolds; (1) psychiatrists usually do not consider surgical treatments, even when they are minimally invasive and reversible, (2) early VNS trials stumbled on methodological difficulties that are common to all invasive neurostimulation technics, and initially failed to provide strong evidence for its efficacy, and (3) VNS requires multidisciplinary teams involving psychiatrists and neurosurgeons that did not exist then. Nevertheless, studies of the past twenty years support VNS as a treatment of depression endowed with a unique efficacy profile: a long runner best at maintaining remission in hard-to-stabilize depression, even in the context of ECT withdrawal, and irrespective of whether it is unipolar or bipolar. Thus, VNS potentially addresses the unmet medical needs of some of the most severe and chronic patients with depression. This review aims at introducing VNS as a treatment option for depression, summarizing available evidence for its efficacy and tolerance, and delineating patient profiles that might benefit the most of such treatment.


Subject(s)
Depression/therapy , Vagus Nerve Stimulation , Depression/epidemiology , Depression/etiology , Depressive Disorder/epidemiology , Depressive Disorder/etiology , Depressive Disorder/therapy , France/epidemiology , Humans , Treatment Outcome , Vagus Nerve/physiology , Vagus Nerve Stimulation/adverse effects , Vagus Nerve Stimulation/methods , Vagus Nerve Stimulation/trends
9.
Mol Ther Methods Clin Dev ; 14: 206-216, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31406701

ABSTRACT

A recent phase I-II, open-label trial of ProSavin, a lentiviral vector delivering the key enzymes in the dopamine biosynthetic pathway to non-dopaminergic striatal neurons, demonstrated safety and improved motor function in parkinsonian patients. However, the magnitude of the effect suggested that optimal levels of dopamine replacement may not have been achieved. OXB-102, a lentiviral vector with an optimized expression cassette for dopamine biosynthesis, has been shown to achieve a significantly higher dopamine yield than ProSavin. We assessed the efficacy of OXB-102 in the MPTP macaque model of Parkinson's disease (PD). At 6 months post-vector administration, all treated animals showed significant improvements in clinical scores and spontaneous locomotor activity compared to controls, with the highest recovery observed in the OXB-102 high-dose (HD) group. Positron emission tomography quantification of 6-[18F]-fluoro-L-m-tyrosine uptake showed a significant increase in amino acid decarboxylase activity for all treated animals, compared with controls, where the OXB-102 HD group showed the highest level of dopaminergic activity. A toxicology study in macaques demonstrated that the vector was safe and well tolerated, with no associated clinical or behavioral abnormalities and no immune response mounted against any transgene products. Overall, these data support the further clinical development of OXB-102 for the treatment of PD.

10.
Front Psychiatry ; 10: 905, 2019.
Article in English | MEDLINE | ID: mdl-31920754

ABSTRACT

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder featuring repetitive intrusive thoughts and behaviors associated with a significant handicap. Of patients, 20% are refractory to medication and cognitive behavioral therapy. Refractory OCD is associated with suicidal behavior and significant degradation of social and professional functioning, with high health costs. Deep brain stimulation (DBS) has been proposed as a reversible and controllable method to treat refractory patients, with meta-analyses showing 60% response rate following DBS, whatever the target: anterior limb of the internal capsule (ALIC), ventral capsule/ventral striatum (VC/VS), nucleus accumbens (NAcc), anteromedial subthalamic nucleus (amSTN), or inferior thalamic peduncle (ITP). But how do we choose the "best" target? Functional neuroimaging studies have shown that ALIC-DBS requires the modulation of the fiber tract within the ventral ALIC via the ventral striatum, bordering the bed nucleus of the stria terminalis and connecting the medial prefrontal cortex with the thalamus to be successful. VC/VS effective sites of stimulation were found within the VC and primarily connected to the medial orbitofrontal cortex (OFC) dorsomedial thalamus, amygdala, and the habenula. NAcc-DBS has been found to reduce OCD symptoms by decreasing excessive fronto-striatal connectivity between NAcc and the lateral and medial prefrontal cortex. The amSTN effective stimulation sites are located at the inferior medial border of the STN, primarily connected to lateral OFC, dorsal anterior cingulate, and dorsolateral prefrontal cortex. Finally, ITP-DBS recruits a bidirectional fiber pathway between the OFC and the thalamus. Thus, these functional connectivity studies show that the various DBS targets lie within the same diseased neural network. They share similar efficacy profiles on OCD symptoms as estimated on the Y-BOCS, the amSTN being the target supported by the strongest evidence in the literature. VC/VS-DBS, amSTN-DBS, and ALIC-DBS were also found to improve mood, behavioral adaptability and potentially both, respectively. Because OCD is such a heterogeneous disease with many different symptom dimensions, the ultimate aim should be to find the most appropriate DBS target for a given refractory patient. This quest will benefit from further investigation and understanding of the individual functional connectivity of OCD patients.

11.
Asian J Neurosurg ; 13(4): 1171-1174, 2018.
Article in English | MEDLINE | ID: mdl-30459887

ABSTRACT

Randomized, controlled trials have shown significant improvement of survival after implantation of 1,3-bis(2-Chloroethyl)-1-nitrosourea (BCNU) wafers for patients suffering from high-grade glioma. A combination of local chemotherapy with BCNU and concomitant radiochemotherapy with temozolomide (TMZ) appears to be attractive to enhance the overall survival, even though these treatments may potentially cumulate their toxicity. We report a clinical case of a patient submitted to this combined treatment protocol. Severe brain edema and a cystic formation in the surgical cavity rapidly developed. Data supporting the use of Gliadel® combined with TMZ comes from small retrospective studies, and some series have shown a very high rate of adverse events (AEs) when this multimodality treatment is applied. Combined protocols of local and systemic chemotherapy might provide survival benefits, although AEs seem currently underestimated.

12.
Hum Gene Ther Clin Dev ; 29(3): 148-155, 2018 09.
Article in English | MEDLINE | ID: mdl-30156440

ABSTRACT

Parkinson's disease is typically treated with oral dopamine replacement therapies. However, long-term use is complicated by motor fluctuations from intermittent stimulation of dopamine receptors and off-target effects. ProSavin, a lentiviral vector based gene therapy that delivers local and continuous dopamine, was previously shown to be well tolerated in a Phase I/II first-in-human study, with significant improvements in motor behavior from baseline at 1 year. Here, patients with Parkinson's disease from the open-label trial were followed up in the long term to assess the safety and efficacy of ProSavin after bilateral injection into the putamen. Fifteen patients who were previously treated with ProSavin have been followed for up to 5 years, with some having been seen for 8 years. Eight patients received deep brain stimulation at different time points, and their subsequent assessments continued to assess safety. Ninety-six drug-related adverse events were reported (87 mild, 6 moderate, 3 severe) of which more than half occurred in the first year. The most common drug-related events were dyskinesias (33 events, 11 patients) and on-off phenomena (22 events, 11 patients). A significant improvement in the defined "off" Unified Parkinson's Disease Rating Scale part III motor scores, compared to baseline, was seen at 2 years (mean score 29 · 2 vs. 38 · 4, n = 14, p < 0.05) and at 4 years in 8/15 patients. ProSavin continued to be safe and well tolerated in patients with Parkinson's disease. Moderate improvements in motor behavior over baseline continued to be reported in the majority of patients who could still be evaluated up to 5 years of follow-up.


Subject(s)
Genetic Therapy/adverse effects , Genetic Vectors/adverse effects , Lentivirus/genetics , Parkinson Disease/therapy , Adult , Aged , Child , Child, Preschool , Drug-Related Side Effects and Adverse Reactions/classification , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Follow-Up Studies , Genetic Vectors/therapeutic use , Humans , Male , Middle Aged , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Treatment Outcome
14.
Sci Rep ; 7: 43997, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28276522

ABSTRACT

Optogenetics is widely used in fundamental neuroscience. Its potential clinical translation for brain neuromodulation requires a careful assessment of the safety and efficacy of repeated, sustained optical stimulation of large volumes of brain tissues. This study was performed in rats and not in non-human primates for ethical reasons. We studied the spatial distribution of light, potential damage, and non-physiological effects in vivo, in anesthetized rat brains, on large brain volumes, following repeated high irradiance photo-stimulation. We generated 2D irradiance and temperature increase surface maps based on recordings taken during optical stimulation using irradiance and temporal parameters representative of common optogenetics experiments. Irradiances of 100 to 600 mW/mm2 with 5 ms pulses at 20, 40, and 60 Hz were applied during 90 s. In vivo electrophysiological recordings and post-mortem histological analyses showed that high power light stimulation had no obvious phototoxic effects and did not trigger non-physiological functional activation. This study demonstrates the ability to illuminate cortical layers to a depth of several millimeters using pulsed red light without detrimental thermal damages.


Subject(s)
Cerebral Cortex/radiation effects , Light , Optogenetics/methods , Animals , Cerebral Cortex/physiology , Hot Temperature/adverse effects , Light/adverse effects , Neurons/physiology , Neurons/radiation effects , Optogenetics/adverse effects , Rats, Wistar , Translational Research, Biomedical
15.
Hum Gene Ther Clin Dev ; 27(3): 100-10, 2016 09.
Article in English | MEDLINE | ID: mdl-27470285

ABSTRACT

Pharmacological dopamine replacement therapies provide the most well-established treatments for Parkinson's disease (PD). However, these long-term treatments can lead to motor complications and off-target effects. ProSavin(®), a lentiviral vector (LV)-based gene therapy approach aimed at restoring local and continuous dopamine production, through delivery of three enzymes in the dopamine biosynthesis pathway, was demonstrated to be safe and well-tolerated in a phase I/II clinical study of patients with advanced PD. Although improvements in motor behaviour were observed, the data indicated that higher levels of dopamine replacement might be required to maximize benefit. We attempted to increase production of dopamine, and its precursor L-Dopa in LV-transduced cells, by optimizing the gene order in the ProSavin expression cassette, and by creating fusions of two or three of the transgenes, using linker sequences. In vitro analysis showed that several gene arrangements provided significantly increased dopamine and/or L-Dopa production compared with ProSavin, and that LV titers and transgene expression were not affected by introducing gene fusions. One vector, equine infectious anemia virus (EIAV)-TCiA, was selected for further characterization and showed significant improvements in dopamine and L-Dopa production compared with ProSavin, in human neuronal cells. Further characterization of EIAV-TCiA demonstrated expression of all three dopamine enzymes in vivo and faithful delivery and integration of the expected gene expression cassette within the genome of target cells, as assessed by Northern and Southern blotting. In conclusion, we have developed a novel LV vector with an increased capacity for L-Dopa and dopamine production compared with the current ProSavin vector. Clinical evaluation of this vector will be performed to assess the benefits in patients with PD.


Subject(s)
Dopamine/biosynthesis , Genetic Therapy , Parkinson Disease/therapy , Recombinant Fusion Proteins/genetics , Transgenes/genetics , Animals , Cells, Cultured , Gene Transfer Techniques , Genetic Vectors , Humans , Male , Neurons/cytology , Neurons/metabolism , Parkinson Disease/genetics , Rats , Rats, Wistar , Recombinant Fusion Proteins/metabolism
16.
Biol Cybern ; 110(1): 55-71, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26837751

ABSTRACT

This paper develops a new closed-loop firing rate regulation strategy for a population of neurons in the subthalamic nucleus, derived using a model-based analysis of the basal ganglia. The system is described using a firing rate model, in order to analyse the generation of beta-band oscillations. On this system, a proportional regulation of the firing rate reduces the gain of the subthalamo-pallidal loop in the parkinsonian case, thus impeding pathological oscillation generation. A filter with a well-chosen frequency is added to this proportional scheme, in order to avoid a potential instability of the feedback loop due to actuation and measurement delays. Our main result is a set of conditions on the parameters of the stimulation strategy that guarantee both its stability and a prescribed delay margin. A discussion on the applicability of the proposed method and a complete set of mathematical proofs is included.


Subject(s)
Basal Ganglia/physiology , Feedback, Physiological/physiology , Models, Biological , Neural Inhibition/physiology , Neurons/physiology , Humans , Parkinson Disease/physiopathology
17.
J Neurosurg ; 125(2): 472-80, 2016 08.
Article in English | MEDLINE | ID: mdl-26745490

ABSTRACT

OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy for motor symptoms in patients with pharmacoresistant Parkinson's disease (PD). However, the procedure, which requires multimodal perioperative exploration such as imaging, electrophysiology, or clinical examination during macrostimulation to secure lead positioning, remains challenging because the STN cannot be reliably visualized using the gold standard, T2-weighted imaging (T2WI) at 1.5 T. Thus, there is a need to improve imaging tools to better visualize the STN, optimize DBS lead implantation, and enlarge DBS diffusion. METHODS Gradient-echo sequences such as those used in T2WI suffer from higher distortions at higher magnetic fields than spin-echo sequences. First, a spin-echo 3D SPACE (sampling perfection with application-optimized contrasts using different flip angle evolutions) FLAIR sequence at 3 T was designed, validated histologically in 2 nonhuman primates, and applied to 10 patients with PD; their data were clinically compared in a double-blind manner with those of a control group of 10 other patients with PD in whom STN targeting was performed using T2WI. RESULTS Overlap between the nonhuman primate STNs segmented on 3D-histological and on 3D-SPACE-FLAIR volumes was high for the 3 most anterior quarters (mean [± SD] Dice scores 0.73 ± 0.11, 0.74 ± 0.06, and 0.60 ± 0.09). STN limits determined by the 3D-SPACE-FLAIR sequence were more consistent with electrophysiological edges than those determined by T2WI (0.9 vs 1.4 mm, respectively). The imaging contrast of the STN on the 3D-SPACE-FLAIR sequence was 4 times higher (p < 0.05). Improvement in the Unified Parkinson's Disease Rating Scale Part III score (off medication, on stimulation) 12 months after the operation was higher for patients who underwent 3D-SPACE-FLAIR-guided implantation than for those in whom T2WI was used (62.2% vs 43.6%, respectively; p < 0.05). The total electrical energy delivered decreased by 36.3% with the 3D-SPACE-FLAIR sequence (p < 0.05). CONCLUSIONS 3D-SPACE-FLAIR sequences at 3 T improved STN lead placement under stereotactic conditions, improved the clinical outcome of patients with PD, and increased the benefit/risk ratio of STN-DBS surgery.


Subject(s)
Deep Brain Stimulation/methods , Magnetic Resonance Imaging , Parkinson Disease/therapy , Subthalamic Nucleus , Animals , Double-Blind Method , Electrodes, Implanted , Humans , Imaging, Three-Dimensional , Macaca mulatta , Prospective Studies
19.
Front Neurosci ; 9: 237, 2015.
Article in English | MEDLINE | ID: mdl-26217171

ABSTRACT

Several disorders are related to pathological brain oscillations. In the case of Parkinson's disease, sustained low-frequency oscillations (especially in the ß-band, 13-30 Hz) correlate with motor symptoms. It is still under debate whether these oscillations are the cause of parkinsonian motor symptoms. The development of techniques enabling selective disruption of these ß-oscillations could contribute to the understanding of the underlying mechanisms, and could be exploited for treatments. A particularly appealing technique is Deep Brain Stimulation (DBS). With clinical electrical DBS, electrical currents are delivered at high frequency to a region made of potentially heterogeneous neurons (the subthalamic nucleus (STN) in the case of Parkinson's disease). Even more appealing is DBS with optogenetics, which is until now a preclinical method using both gene transfer and deep brain light delivery and enabling neuromodulation at the scale of one given neural network. In this work, we rely on delayed neural fields models of STN and the external Globus Pallidus (GPe) to develop, theoretically validate and test in silico a closed-loop stimulation strategy to disrupt these sustained oscillations with optogenetics. First, we rely on tools from control theory to provide theoretical conditions under which sustained oscillations can be attenuated by a closed-loop stimulation proportional to the measured activity of STN. Second, based on this theoretical framework, we show numerically that the proposed closed-loop stimulation efficiently attenuates sustained oscillations, even in the case when the photosensitization effectively affects only 50% of STN neurons. We also show through simulations that oscillations disruption can be achieved when the same light source is used for the whole STN population. We finally test the robustness of the proposed strategy to possible acquisition and processing delays, as well as parameters uncertainty.

20.
Med Sci (Paris) ; 31(4): 404-16, 2015 Apr.
Article in French | MEDLINE | ID: mdl-25958759

ABSTRACT

Optogenetic neuromodulation techniques, which have emerged during the last 15 years, have considerably enhanced our ability to probe the functioning of neural circuits by allowing the excitation and inhibition of genetically-defined neuronal populations using light. Having gained tremendous popularity in the field of fundamental neuroscience, these techniques are now opening new therapeutic avenues. Optogenetic neuromodulation is a method of choice for studying the physiopathology of neurological and neuropsychiatric disorders in a range of animal models, and could accelerate the discovery of new therapeutic strategies. New therapeutic protocols employing optogenetic neuromodulation may also emerge in the near future, offering promising alternative approaches for disorders which lack appropriate treatments, such as pharmacoresistant epilepsy and inherited retinal degeneration.


Subject(s)
Mental Disorders/therapy , Neurotransmitter Agents/therapeutic use , Optogenetics/methods , Animals , Epilepsy/therapy , Genetic Vectors , Humans , Light , Mice , Mice, Transgenic , Nerve Tissue/metabolism , Nerve Tissue/radiation effects , Neurotransmitter Agents/genetics , Parkinson Disease/therapy , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...