Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 17885, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095406

ABSTRACT

Dental materials are challenged by wear processes in the oral environment and should be evaluated in laboratory tests prior to clinical use. Many laboratory wear-testing devices are high-cost investments and not available for cross-centre comparisons. The 'Rub&Roll' wear machine enables controlled application of force, chemical and mechanical loading, but the initial design was not able to test against rigid antagonist materials. The current study aimed to probe the sensitivity of a new 'Rub&Roll' set-up by evaluating the effect of force and test solution parameters (deionized water; water + abrasive medium; acid + abrasive medium) on the wear behaviour of direct and indirect dental resin-based composites (RBCs) compared with human molars against 3D-printed rod antagonists. Molars exhibited greater height loss than RBCs in all test groups, with the largest differences recorded with acidic solutions. Direct RBCs showed significantly greater wear than indirect RBCs in the groups containing abrasive media. The acidic + abrasive medium did not result in increased wear of RBC materials. The developed method using the 'Rub&Roll' wear machine in the current investigation has provided a sensitive wear test method to allow initial screening of resin-based composite materials compared with extracted human molars under the influence of different mechanical and erosive challenges.


Subject(s)
Composite Resins , Dental Materials , Materials Testing , Humans , Materials Testing/methods , Composite Resins/chemistry , Molar , Surface Properties
2.
Front Microbiol ; 15: 1414412, 2024.
Article in English | MEDLINE | ID: mdl-39027093

ABSTRACT

Introduction: Pseudomonas aeruginosa is a leading cause of canine otitis externa. Enrofloxacin is often applied topically to treat this condition, although recalcitrant and recurring infections are common. There is evidence that exposure to blue light (400-470 nm) has a bactericidal effect on P. aeruginosa and other microorganisms. Methods: In the present study, we tested the biocidal effect of blue light (375-450 nm), alone or in combination with enrofloxacin, against six isolates of P. aeruginosa from dogs with otitis externa (5 of which were resistant to enrofloxacin). Results: Treatment of planktonic cell cultures with blue light resulted in significant (p < 0.5) reductions in Colony Forming Units (CFU) for all seven strains tested, in some cases below the limit of detection. The greatest bactericidal effect was observed following exposure to light at 405 nm wavelength (p < 0.05). Exposure to blue light for 20 min usually resulted in a greater reduction in Pseudomonas aeruginosa than enrofloxacin treatment, and combination treatment typically resulted in the largest reductions in CFU. Analysis of the genome sequences of these strains established that enrofloxacin resistance was likely the result of a S466F substitution in GyrB. However, there was no clear association between genotype and susceptibility to blue light treatment. Discussion: These results suggest that blue light treatment, particularly at 405 nm wavelength, and especially in combination with enrofloxacin therapy, could be an effective treatment for otherwise recalcitrant canine otitis externa caused by Pseudomonas aeruginosa. It may also provide a way of extending the usefulness of enrofloxacin therapy which would otherwise be ineffective as a sole therapeutic agent.

3.
Dent Mater ; 40(8): 1252-1258, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876829

ABSTRACT

OBJECTIVES: Quality control testing of dental materials requires a standard to enable the generation of reproducible and comparable data. Currently there are no standards for testing materials used for vital pulp therapy. The aim of this study was to develop a new standard to evaluate solubility of pulp preservation materials. METHODS: The solubility of three materials used for vital pulp therapy: Biodentine, TheraCal and Activa was evaluated using two international standards for dental materials ISO 4049:2019 (S1) and ISO 6876:2012 (S2). For both standards, a modified methodology was evaluated. This included changing the volume of the solution used (S1M, S2M), using Dulbecco's modified eagle medium (DMEM) as an alternative to water (S1D, S2D) and periodic solution change for the ISO 4049 method (S1P, S1MP). Materials were characterised before and after completion of solubility test using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. RESULTS: The test materials exhibited different solubility values depending on the methodology used. Biodentine exhibited significantly lower solubility when lower volumes of solution were used when tested using both ISO methods (p ≤ 0.05). TheraCal and Activa showed negative solubility values after desiccation when tested using ISO 4049:2019. The Biodentine exhibited changes in its microstructure which was dependent on the method used to test solubility. CONCLUSIONS: The solubility values obtained were dependent on the method used. It is thus important to use methods that replicate the clinical environment for meaningful evaluations.


Subject(s)
Calcium Compounds , Materials Testing , Microscopy, Electron, Scanning , Silicates , Solubility , X-Ray Diffraction , Silicates/chemistry , Calcium Compounds/chemistry , Dental Materials/chemistry , Aluminum Compounds/chemistry , Pulp Capping and Pulpectomy Agents/chemistry , Oxides/chemistry , Drug Combinations
4.
Dent Mater ; 40(9): 1400-1408, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908961

ABSTRACT

OBJECTIVES: The study aimed to assess the impact of diphenyliodonium hexafluorophosphate (DPI) on the physicochemical properties of experimental resin composites (ECRs) featuring reduced concentrations of camphorquinone (CQ)/amine. METHODS: Five concentrations of CQ (0.125, 0.25, 0.5, 0.75, and 1 mol%) with dimethylaminoethyl amine benzoate (EDAB) in a 1:2 mol% ratio (CQ:EDAB) were incorporated into a 50:50 mass% monomer blend of bisphenol glycidyl methacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). An additional 5 groups with the same CQ:EDAB concentrations had 0.5 mol% DPI added. Each resin group contained 60 wt% of 0.7 µm barium-alumino-silicate glass. Light transmission (n = 3), real-time degree of polymerization (n = 3), temperature change during polymerization (n = 5), polymerization shrinkage strain (n = 3), flexural strength, and modulus (n = 12), as well as water sorption and solubility (n = 5), were evaluated. Data were analyzed using two-way ANOVA and Tukey's post-hoc test (α = 0.05). RESULTS: Light transmission was reduced in groups containing 0.125 and 0.25 mol% of CQ without DPI. DPI increased temperature, degree and rate of polymerization, despite the reduction in CQ/amine concentration. Additionally, there was an increase in polymerization shrinkage strain, flexural strength and modulus, and a reduction in water sorption and solubility in ECRs with DPI, even with lower concentrations of CQ/EDAB. SIGNIFICANCE: DPI improved the assessed properties of composites across various concentrations of CQ/EDAB, showing the benefit of reducing the quantity of CQ used without compromising the properties and curing of the resin composites.


Subject(s)
Composite Resins , Materials Testing , Polyethylene Glycols , Polymerization , Polymethacrylic Acids , Terpenes , Composite Resins/chemistry , Terpenes/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Surface Properties , Onium Compounds/chemistry , Polyurethanes/chemistry , Acrylic Resins , Biphenyl Compounds , Camphor/analogs & derivatives
5.
Dent Mater ; 40(9): 1452-1463, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38945741

ABSTRACT

OBJECTIVE: This study investigated the influence of photoinitiator types on degree of conversion (DC), rate of polymerization (RP), flexural strength (FS), flexural modulus (FM), and light transmittance (LT) of filled and unfilled light-curable resin cements through different thicknesses and shades of lithium disilicate ceramics. METHODS: Lithium disilicate ceramic discs (IPS Emax Press, background [0.0], 0.5, 1.0, 2.0, 3.0, and 4.0 mm, shades A1 and BL3) were prepared. Experimental resin-based cements [TEGDMA/BisGMA (50/50 mass%)] were prepared using either camphorquinone (CQ)/amine (0.44/1.85 mol%) or TPO (0.44 mol%)], and a micro and nanofiller loads of nil (unfilled); 40/10 mass%; and 50/10 mass%). Resin cements (0.2 mm thick) were placed on the lower surface of the ceramic specimens and light-activated for 30 s from the upper surface using a Bluephase Style curing light (exitance at tip: 1236 mW/cm2 ± 1.20). LT and distribution of irradiance through the ceramics were measured using a UV-vis spectrometer and a beam profile camera, respectively (n = 3). The DC and RP were measured in real-time using mid infrared spectroscopy in attenuated total reflectance (ATR) mode (n = 3). FS and FM were measured using a universal testing machine (n = 5). Statistical analyses were performed on LT, DC, RP, FS, and FM data using a general linear model, and supplementary ANOVA and post hoc Tukey multiple comparison test were also performed (α = .05). RESULTS: Thicknesses, shades, photoinitiator type, and fillers load significantly influenced the optical and mechanical characteristics of the resin-based materials (p < 0.05). The BL3 shade ceramic provided higher values of DC, RP, FS, FM, and LT compared with the A1 shade (p < 0.05). Increasing ceramic thickness decreased the properties of the resin-based materials (p < 0.05). Generally, TPO improved mechanical properties of the resin cement compared with CQ (p < 0.05). SIGNIFICANCE: The luting process of indirect restorations may be improved by using high molar absorptivity, more reactive, and more efficient photoinitiators such as TPO, as opposed to conventional CQ. The use of such initiator may allow the placement of thicker and more opaque indirect restorations.


Subject(s)
Ceramics , Dental Porcelain , Flexural Strength , Light-Curing of Dental Adhesives , Materials Testing , Polymerization , Resin Cements , Resin Cements/chemistry , Dental Porcelain/chemistry , Ceramics/chemistry , Polymethacrylic Acids/chemistry , Polyethylene Glycols/chemistry , Photoinitiators, Dental/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Surface Properties , Terpenes/chemistry , Camphor/analogs & derivatives
6.
Biomater Investig Dent ; 11: 40308, 2024.
Article in English | MEDLINE | ID: mdl-38645925

ABSTRACT

Harnessing the power of light and its photonic energy is a powerful tool in biomedical applications. Its use ranges from biomaterials processing and fabrication of polymers to diagnostics and therapeutics. Dental light curable materials have evolved over several decades and now offer very fast (≤ 10 s) and reliable polymerization through depth (4-6 mm thick). This has been achieved by developments on two fronts: (1) chemistries with more efficient light absorption characteristics (camphorquinone [CQ], ~30 L mol-1 cm1 [ʎmax 470 nm]; monoacylphosphine oxides [MAPO], ~800 L mol-1 cm-1 [ʎmax 385 nm]; bisacylphosphine oxide [BAPO], ~1,000 L mol-1 cm-1 [ʎmax 385 nm]) as well mechanistically efficient and prolonged radical generation processes during and after light irradiation, and; (2) introducing light curing technologies (light emitting diodes [LEDs] and less common lasers) with higher powers (≤ 2 W), better spectral range using multiple diodes (short: 390-405 nm; intermediate: 410-450 nm; and long: 450-480 nm), and better spatial power distribution (i.e. homogenous irradiance). However, adequate cure of materials falls short for several reasons, including improper selection of materials and lights, limitations in the chemistry of the materials, and limitations in delivering light through depth. Photonic energy has further applications in dentistry which include transillumination for diagnostics, and therapeutic applications that include photodynamic therapy, photobiomodulation, and photodisinfection. Light interactions with materials and biological tissues are complex and it is important to understand the advantages and limitations of these interactions for successful treatment outcomes. This article highlights the advent of photonic technologies in dentistry, its applications, the advantages and limitations, and possible future developments.

SELECTION OF CITATIONS
SEARCH DETAIL