Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Appl Clin Med Phys ; 21(1): 127-135, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31854078

ABSTRACT

PURPOSE: With the increasing use of MR-guided radiation therapy (MRgRT), it becomes important to understand and explore accuracy of medical dosimeters in the presence of magnetic field. The purpose of this work is to characterize metal-oxide-semiconductor field-effect transistors (MOSFETs) in MRgRT systems at 0.345 T magnetic field strength. METHODS: A MOSFET dosimetry system, developed by Best Medical Canada for in-vivo patient dosimetry, was used to study various commissioning tests performed on a MRgRT system, MRIdian® Linac. We characterized the MOSFET dosimeter with different cable lengths by determining its calibration factor, monitor unit linearity, angular dependence, field size dependence, percentage depth dose (PDD) variation, output factor change, and intensity modulated radiation therapy quality assurance (IMRT QA) verification for several plans. MOSFET results were analyzed and compared with commissioning data and Monte Carlo calculations. RESULTS: MOSFET measurements were not found to be affected by the presence of 0.345 T magnetic field. Calibration factors were similar for different cable length dosimeters either placed at the parallel or perpendicular direction to the magnetic field, with variations of less than 2%. The detector showed good linearity (R2  = 0.999) for 100-600 MUs range. Output factor measurements were consistent with ionization chamber data within 2.2%. MOSFET PDD measurements were found to be within 1% for 1-15 cm depth range in comparison to ionization chamber. MOSFET normalized angular response matched thermoluminescent detector (TLD) response within 5.5%. The IMRT QA verification data for the MRgRT linac showed that the percentage difference between ionization chamber and MOSFET was 0.91%, 2.05%, and 2.63%, respectively for liver, spine, and mediastinum. CONCLUSION: MOSFET dosimeters are not affected by the 0.345 T magnetic field in MRgRT system. They showed physics parameters and performance comparable to TLD and ionization chamber; thus, they constitute an alternative to TLD for real-time in-vivo dosimetry in MRgRT procedures.


Subject(s)
Particle Accelerators/instrumentation , Phantoms, Imaging , Quality Assurance, Health Care/standards , Radiation Dosimeters/standards , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Calibration , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Monte Carlo Method , Radiotherapy Dosage , Semiconductors
2.
Med Phys ; 47(2): 317-330, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31682018

ABSTRACT

PURPOSE: With advance magnetic resonance (MR)-guided online adaptive radiotherapy (MRgoART) relying on calculation-based intensity-modulated radiation therapy (IMRT) quality assurance (QA), accurate and sensitive QA of the multileaf collimator (MLC) becomes an increasingly essential component for routine machine QA. As such, it is important to assure compliance with the AAPM TG142 guidelines to supplement calculation-based QA methods for an online adaptive radiotherapy program. We have developed and implemented an efficient and highly sensitive QA procedure using an ionization chamber profiler (ICP) array to enable real-time characterization of the positional accuracy of a double-focused and double-stacked MLC on a clinical MR-guided radiotherapy (MRgRT) system and to supplement calculation-based QA for an MRgoART program. METHODS: An in-house MR-compatible jig was used to position the ICP (detector resolution 5 mm on X/Y axis) at an extended SDD of 108.4 cm to enable each MLC leaf (8.3 mm leaf width at isocenter) to be uniquely determined by two neighboring ion chambers. The MRgRT linac system utilizes a novel jawless, double-focused, and double-stacked MLC design such that the upper bank (MLC1) and lower bank (MLC2) are offset by half a leaf width. Positional accuracy was characterized by three methods: single bank half-beam block (HBB) at central axis, forward slash diagonal (FSD), and backslash diagonal (BSD) at off-axis. Measurements were performed for each bank in which each leaf occludes half of a detector. A corresponding reference field with the MLC retracted from occlusion was measured. The sensitivities of HBB, FSD, and BSD were evaluated by introducing 0.5-2.5 mm of known errors in 0.5 mm increments, in both positive and negative directions. The relationship between detector response and MLC error was established. Over a 6-month longitudinal assessment, we have evaluated MLC performance with weekly QA of HBB among cardinal angles, and monthly QA of FSD and BSD. RESULTS: A strong correlation was found between detector response of percentage dose difference and MLC positional error introduced (N = 350 introduced errors) for both HBB and FSD/BSD with coefficient of determination of 0.999 and 0.977, respectively. The relationship between detector response to MLC positional change was found to be 20.65%/mm for HBB and 11.14%/mm for FSD and BSD. At baseline, the mean MLC positional accuracy averaged across all leaves was 0.06 ± 0.27 mm (HBB), 0.04 ± 0.52 mm (FSD), -0.06 ± 0.51 mm (BSD). The mean MLC positional accuracy relative to baseline over the 6-month assessment was found to be highly reproducible at 0.00 ± 0.12 mm (HBB; N = 28 weeks), -0.02 ± 0.19 mm (FSD; N = 6 months), -0.03 ± 0.19 mm (BSD; N = 6 months). CONCLUSIONS: Positional accuracy of a novel jawless, double-focused, double-stacked MLC has been characterized and monitored over 6 months with an efficient, highly sensitive, and robust method using an ICP array. This routine QA method supplements calculation-based IMRT QA for an online adaptive radiotherapy program. Longitudinal assessment demonstrated no-drift in the MLC calibration. A highly reproducible jig setup allowed the validation of MLC positional accuracy to be within TG142 criteria of ±1 mm for 99% of measurements (i.e., 100% HBB, 95% BSD, 95% FSD) over the 6-month assessment.


Subject(s)
Magnetic Resonance Imaging/methods , Radiosurgery/methods , Radiotherapy, Intensity-Modulated/methods , Calibration , Computer Simulation , Humans , Quality Assurance, Health Care , Quality Control , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results , Time Factors
3.
Adv Radiat Oncol ; 4(1): 142-149, 2019.
Article in English | MEDLINE | ID: mdl-30706022

ABSTRACT

PURPOSE: Daily magnetic resonance (MR)-guided radiation has the potential to improve stereotactic body radiation therapy (SBRT) for tumors of the liver. Magnetic resonance imaging (MRI) introduces unique variables that are untested clinically: electron return effect, MRI geometric distortion, MRI to radiation therapy isocenter uncertainty, multileaf collimator position error, and uncertainties with voxel size and tracking. All could lead to increased toxicity and/or local recurrences with SBRT. In this multi-institutional study, we hypothesized that direct visualization provided by MR guidance could allow the use of small treatment volumes to spare normal tissues while maintaining clinical outcomes despite the aforementioned uncertainties in MR-guided treatment. METHODS AND MATERIALS: Patients with primary liver tumors or metastatic lesions treated with MR-guided liver SBRT were reviewed at 3 institutions. Toxicity was assessed using National Cancer Institute Common Terminology Criteria for Adverse Events Version 4. Freedom from local progression (FFLP) and overall survival were analyzed with the Kaplan-Meier method and χ2 test. RESULTS: The study population consisted of 26 patients: 6 hepatocellular carcinomas, 2 cholangiocarcinomas, and 18 metastatic liver lesions (44% colorectal metastasis). The median follow-up was 21.2 months. The median dose delivered was 50 Gy at 10 Gy/fraction. No grade 4 or greater gastrointestinal toxicities were observed after treatment. The 1-year and 2-year overall survival in this cohort is 69% and 60%, respectively. At the median follow-up, FFLP for this cohort was 80.4%. FFLP for patients with hepatocellular carcinomas, colorectal metastasis, and all other lesions were 100%, 75%, and 83%, respectively. CONCLUSIONS: This study describes the first clinical outcomes of MR-guided liver SBRT. Treatment was well tolerated by patients with excellent local control. This study lays the foundation for future dose escalation and adaptive treatment for liver-based primary malignancies and/or metastatic disease.

4.
Cureus ; 10(4): e2422, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29872602

ABSTRACT

Magnetic resonance-guided radiation therapy (MRgRT) offers advantages for image guidance for radiotherapy treatments as compared to conventional computed tomography (CT)-based modalities. The superior soft tissue contrast of magnetic resonance (MR) enables an improved visualization of the gross tumor and adjacent normal tissues in the treatment of abdominal and thoracic malignancies. Online adaptive capabilities, coupled with advanced motion management of real-time tracking of the tumor, directly allow for high-precision inter-/intrafraction localization. The primary aim of this case series is to describe MR-based interventions for localizing targets not well-visualized with conventional image-guided technologies. The abdominal and thoracic sites of the lung, kidney, liver, and gastric targets are described to illustrate the technological advancement of MR-guidance in radiotherapy.

5.
Technol Cancer Res Treat ; 16(3): 366-372, 2017 06.
Article in English | MEDLINE | ID: mdl-28168936

ABSTRACT

PURPOSE: Magnetic resonance imaging-guided radiation therapy has entered clinical practice at several major treatment centers. Treatment of early-stage non-small cell lung cancer with stereotactic body radiation therapy is one potential application of this modality, as some form of respiratory motion management is important to address. We hypothesize that magnetic resonance imaging-guided tri-cobalt-60 radiation therapy can be used to generate clinically acceptable stereotactic body radiation therapy treatment plans. Here, we report on a dosimetric comparison between magnetic resonance imaging-guided radiation therapy plans and internal target volume-based plans utilizing volumetric-modulated arc therapy. MATERIALS AND METHODS: Ten patients with early-stage non-small cell lung cancer who underwent radiation therapy planning and treatment were studied. Following 4-dimensional computed tomography, patient images were used to generate clinically deliverable plans. For volumetric-modulated arc therapy plans, the planning tumor volume was defined as an internal target volume + 0.5 cm. For magnetic resonance imaging-guided plans, a single mid-inspiratory cycle was used to define a gross tumor volume, then expanded 0.3 cm to the planning tumor volume. Treatment plan parameters were compared. RESULTS: Planning tumor volumes trended larger for volumetric-modulated arc therapy-based plans, with a mean planning tumor volume of 47.4 mL versus 24.8 mL for magnetic resonance imaging-guided plans ( P = .08). Clinically acceptable plans were achievable via both methods, with bilateral lung V20, 3.9% versus 4.8% ( P = .62). The volume of chest wall receiving greater than 30 Gy was also similar, 22.1 versus 19.8 mL ( P = .78), as were all other parameters commonly used for lung stereotactic body radiation therapy. The ratio of the 50% isodose volume to planning tumor volume was lower in volumetric-modulated arc therapy plans, 4.19 versus 10.0 ( P < .001). Heterogeneity index was comparable between plans, 1.25 versus 1.25 ( P = .98). CONCLUSION: Magnetic resonance imaging-guided tri-cobalt-60 radiation therapy is capable of delivering lung high-quality stereotactic body radiation therapy plans that are clinically acceptable as compared to volumetric-modulated arc therapy-based plans. Real-time magnetic resonance imaging provides the unique capacity to directly observe tumor motion during treatment for purposes of motion management.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy, Image-Guided/methods , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Cobalt Radioisotopes/therapeutic use , Female , Humans , Lung/diagnostic imaging , Lung/pathology , Lung/radiation effects , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Magnetic Resonance Imaging/methods , Male , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/standards , Radiotherapy, Intensity-Modulated/methods
6.
J Med Phys ; 41(2): 92-9, 2016.
Article in English | MEDLINE | ID: mdl-27217620

ABSTRACT

This study investigated the dosimetric differences in treatment plans from flattened and flattening filter-free (FFF) beams from the TrueBeam System. A total of 104 treatment plans with static (sliding window) intensity-modulated radiotherapy beams and volumetric-modulated arc therapy (VMAT) beams were generated for 15 patients involving three cancer sites. In general, the FFF beam provides similar target coverage as the flattened beam with improved dose sparing to organ-at-risk (OAR). Among all three cancer sites, the head and neck showed more important differences between the flattened beam and FFF beam. The maximum reduction of the FFF beam in the mean dose reached up to 2.82 Gy for larynx in head and neck case. Compared to the 6 MV flattened beam, the 10 MV FFF beam provided improved dose sparing to certain OARs, especially for VMAT cases. Thus, 10 MV FFF beam could be used to improve the treatment plan.

7.
Radiother Oncol ; 118(2): 416-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26627702

ABSTRACT

SBRT is increasingly utilized in liver tumor treatment. MRI-guided RT allows for real-time MRI tracking during therapy. Liver tumors are often poorly visualized and most contrast agents are transient. Gadoxetate may allow for sustained tumor visualization. Here, we report on the first use of gadoxetate during real-time MRI-guided SBRT.


Subject(s)
Liver Neoplasms/surgery , Radiosurgery/methods , Aged , Aged, 80 and over , Contrast Media , Drug Evaluation/methods , Feasibility Studies , Gadolinium DTPA , Humans , Liver Neoplasms/diagnosis , Magnetic Resonance Imaging, Interventional/methods , Middle Aged
8.
J Appl Clin Med Phys ; 16(6): 30-40, 2015 11 08.
Article in English | MEDLINE | ID: mdl-26699552

ABSTRACT

ViewRay is a novel MR-guided radiotherapy system capable of imaging in near real-time at four frames per second during treatment using 0.35T field strength. It allows for improved gating techniques and adaptive radiotherapy. Three cobalt-60 sources (~ 15,000 Curies) permit multiple-beam, intensity-modulated radiation therapy. The primary aim of this study is to assess the imaging stability, accuracy, and automatic segmentation algorithm capability to track motion in simulated and in vivo targets. Magnetic resonance imaging (MRI) characteristics of the system were assessed using the American College of Radiology (ACR)-recommended phantom and accreditation protocol. Images of the ACR phantom were acquired using a head coil following the ACR scanning instructions. ACR recommended T1- and T2-weighted sequences were evaluated. Nine measurements were performed over a period of seven months, on just over a monthly basis, to establish consistency. A silicon dielectric gel target was attached to the motor via a rod. 40 mm total amplitude was used with cycles of 3 to 9 s in length in a sinusoidal trajectory. Trajectories of six moving clinical targets in four canine patients were quantified and tracked. ACR phantom images were analyzed, and the results were compared with the ACR acceptance levels. Measured slice thickness accuracies were within the acceptance limits. In the 0.35 T system, the image intensity uniformity was also within the ACR acceptance limit. Over the range of cycle lengths, representing a wide range of breathing rates in patients imaged at four frames/s, excellent agreement was observed between the expected and measured target trajectories. In vivo canine targets, including the gross target volume (GTV), as well as other abdominal soft tissue structures, were visualized with inherent MR contrast, allowing for preliminary results of target tracking.


Subject(s)
Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Animals , Dogs , Four-Dimensional Computed Tomography , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Models, Animal , Motion , Phantoms, Imaging/standards , Phantoms, Imaging/statistics & numerical data , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed
10.
Radiol Res Pract ; 2014: 547075, 2014.
Article in English | MEDLINE | ID: mdl-25165581

ABSTRACT

Purpose. To achieve rapid automated delineation of gross target volume (GTV) and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D) CT. Methods and Materials. Novel morphological processing and successive localization (MPSL) algorithms were designed and implemented for achieving autosegmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix© and MIMVista software). Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV) were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0 ± 11.1 seconds per phase (512 × 512 resolution) as compared to 142.3 ± 11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth) were 0.865 ± 0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation.

11.
J Med Phys ; 39(2): 64-70, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24872603

ABSTRACT

ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving <20% of prescription dose (DRx) were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95) had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.

12.
Med Dosim ; 38(3): 233-7, 2013.
Article in English | MEDLINE | ID: mdl-23541524

ABSTRACT

Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison of target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.


Subject(s)
Chondrosarcoma/radiotherapy , Photons/therapeutic use , Proton Therapy , Spinal Neoplasms/radiotherapy , Thoracic Vertebrae , Aged , Chondrosarcoma/diagnostic imaging , Humans , Male , Radiography , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Spinal Neoplasms/diagnostic imaging
13.
Med Dosim ; 37(3): 233-9, 2012.
Article in English | MEDLINE | ID: mdl-22365416

ABSTRACT

The purpose of this study was to evaluate helical tomotherapy dosimetry in postmastectomy patients undergoing treatment for chest wall and positive nodal regions with simultaneous integrated boost (SIB) in the scar region using strip bolus. Six postmastectomy patients were scanned with a 5-mm-thick strip bolus covering the scar planning target volume (PTV) plus 2-cm margin. For all 6 cases, the chest wall received a total cumulative dose of 49.3-50.4 Gy with daily fraction size of 1.7-2.0 Gy. Total dose to the scar PTV was prescribed to 58.0-60.2 Gy at 2.0-2.5 Gy per fraction. The supraclavicular PTV and mammary nodal PTV received 1.7-1.9 dose per fraction. Two plans (with and without bolus) were generated for all 6 cases. To generate no-bolus plans, strip bolus was contoured and overrode to air density before planning. The setup reproducibility and delivered dose accuracy were evaluated for all 6 cases. Dose-volume histograms were used to evaluate dose-volume coverage of targets and critical structures. We observed reduced air cavities with the strip bolus setup compared with what we normally see with the full bolus. The thermoluminescence dosimeters (TLD) in vivo dosimetry confirmed accurate dose delivery beneath the bolus. The verification plans performed on the first day megavoltage computed tomography (MVCT) image verified that the daily setup and overall dose delivery was within 2% accuracy compared with the planned dose. The hotspot of the scar PTV in no-bolus plans was 111.4% of the prescribed dose averaged over 6 cases compared with 106.6% with strip bolus. With a strip bolus only covering the postmastectomy scar region, we observed increased dose uniformity to the scar PTV, higher setup reproducibility, and accurate dose delivered beneath the bolus. This study demonstrates the feasibility of using a strip bolus over the scar using tomotherapy for SIB dosimetry in postmastectomy treatments.


Subject(s)
Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Cicatrix/radiotherapy , Cicatrix/surgery , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Adult , Aged , Breast Neoplasms/complications , Cicatrix/etiology , Female , Humans , Middle Aged , Postoperative Period , Radiotherapy Dosage , Radiotherapy, Adjuvant , Radiotherapy, Conformal , Systems Integration , Treatment Outcome
14.
Med Dosim ; 37(2): 157-62, 2012.
Article in English | MEDLINE | ID: mdl-21925866

ABSTRACT

This study highlights the use of adaptive planning to accommodate testicular shielding in helical tomotherapy for malignancies of the proximal thigh. Two cases of young men with large soft tissue sarcomas of the proximal thigh are presented. After multidisciplinary evaluation, preoperative radiation therapy was recommended. Both patients were referred for sperm banking and lead shields were used to minimize testicular dose during radiation therapy. To minimize imaging artifacts, kilovoltage CT (kVCT) treatment planning was conducted without shielding. Generous hypothetical contours were generated on each "planning scan" to estimate the location of the lead shield and generate a directionally blocked helical tomotherapy plan. To ensure the accuracy of each plan, megavoltage fan-beam CT (MVCT) scans were obtained at the first treatment and adaptive planning was performed to account for lead shield placement. Two important regions of interest in these cases were femurs and femoral heads. During adaptive planning for the first patient, it was observed that the virtual lead shield contour on kVCT planning images was significantly larger than the actual lead shield used for treatment. However, for the second patient, it was noted that the size of the virtual lead shield contoured on the kVCT image was significantly smaller than the actual shield size. Thus, new adaptive plans based on MVCT images were generated and used for treatment. The planning target volume was underdosed up to 2% and had higher maximum doses without adaptive planning. In conclusion, the treatment of the upper thigh, particularly in young men, presents several clinical challenges, including preservation of gonadal function. In such circumstances, adaptive planning using MVCT can ensure accurate dose delivery even in the presence of high-density testicular shields.


Subject(s)
Radiation Injuries/prevention & control , Radiotherapy Planning, Computer-Assisted , Testicular Diseases/prevention & control , Humans , Lead , Male , Nerve Sheath Neoplasms/radiotherapy , Sarcoma/radiotherapy , Thigh , Tomography, X-Ray Computed , Young Adult
15.
Radiother Oncol ; 100(2): 241-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21316783

ABSTRACT

BACKGROUND AND PURPOSE: To compare left-sided whole breast conventional and intensity-modulated radiotherapy (IMRT) treatment planning techniques. MATERIALS AND METHODS: Treatment plans were created for 10 consecutive patients. Three-dimensional conformal radiotherapy (3DCRT), forward-planned IMRT (for-IMRT), and inverse-planned IMRT (inv-IMRT) used two tangent beams. For-IMRT utilized up to four segments per beam. For helical tomotherapy (HT) plans, beamlet entrance and/or exit to critical structures was blocked. Topotherapy plans, which used static gantry angles with simultaneous couch translation and inverse-planned intensity modulation, used two tangent beams. Plans were normalized to 50Gy to 95% of the retracted PTV. RESULTS: Target max doses were reduced with for-IMRT compared to 3DCRT, which were further reduced with HT, topotherapy, and inv-IMRT. HT resulted in lowest heart and ipsilateral lung max doses, but had higher mean doses. Inv-IMRT and topotherapy reduced ipsilateral lung mean and max doses compared to 3DCRT and for-IMRT. CONCLUSIONS: All modalities evaluated provide adequate coverage of the intact breast. HT, topotherapy, and inv-IMRT can reduce high doses to the target and normal tissues, although HT results in increased low doses to large volume of normal tissue. For-IMRT improves target homogeneity compared with 3DCRT, but to a lesser degree than the inverse-planned modalities.


Subject(s)
Breast Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Breast/radiation effects , Female , Humans , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/instrumentation
16.
Int J Radiat Oncol Biol Phys ; 81(1): 284-96, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21236598

ABSTRACT

PURPOSE: Both helical tomotherapy (HT) and single-arc intensity-modulated arc therapy (IMAT) deliver radiation using rotational beams with multileaf collimators. We report a dual-institution study comparing dosimetric aspects of these two modalities. METHODS AND MATERIALS: Eight patients each were selected from the University of Maryland (UMM) and the University of Wisconsin Cancer Center Riverview (UWR), for a total of 16 cases. Four cancer sites including brain, head and neck (HN), lung, and prostate were selected. Single-arc IMAT plans were generated at UMM using Varian RapidArc (RA), and HT plans were generated at UWR using Hi-Art II TomoTherapy. All 16 cases were planned based on the identical anatomic contours, prescriptions, and planning objectives. All plans were swapped for analysis at the same time after final approval. Dose indices for targets and critical organs were compared based on dose-volume histograms, the beam-on time, monitor units, and estimated leakage dose. After the disclosure of comparison results, replanning was done for both techniques to minimize diversity in optimization focus from different operators. RESULTS: For the 16 cases compared, the average beam-on time was 1.4 minutes for RA and 4.8 minutes for HT plans. HT provided better target dose homogeneity (7.6% for RA and 4.2% for HT) with a lower maximum dose (110% for RA and 105% for HT). Dose conformation numbers were comparable, with RA being superior to HT (0.67 vs. 0.60). The doses to normal tissues using these two techniques were comparable, with HT showing lower doses for more critical structures. After planning comparison results were exchanged, both techniques demonstrated improvements in dose distributions or treatment delivery times. CONCLUSIONS: Both techniques created highly conformal plans that met or exceeded the planning goals. The delivery time and total monitor units were lower in RA than in HT plans, whereas HT provided higher target dose uniformity.


Subject(s)
Algorithms , Brain Neoplasms/radiotherapy , Head and Neck Neoplasms/radiotherapy , Lung Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Interinstitutional Relations , Male , Maryland , Organs at Risk , Particle Accelerators , Radiotherapy Dosage , Wisconsin
17.
Int J Radiat Oncol Biol Phys ; 79(3): 934-42, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-20884127

ABSTRACT

PURPOSE: Pulsed reduced dose-rate radiotherapy (PRDR) is a valuable method of reirradiation because of its potential to reduce late normal tissue toxicity while still yielding significant tumoricidal effect. A typical method using a conventional linear accelerator (linac) is to deliver a series of 20-cGy pulses separated by 3-min intervals to give an effective dose-rate of just under 7 cGy/min. Such a strategy is fraught with difficulties when attempted on a helical tomotherapy unit. We investigated various means to overcome this limitation. METHODS AND MATERIALS: Phantom and patient cases were studied. Plans were generated with varying combinations of field width (FW), pitch, and modulation factor (MF) to administer 200 cGy per fraction to the planning target in eight subfractions, thereby mimicking the technique used on conventional linacs. Plans were compared using dose-volume histograms, homogeneity indices, conformation numbers, and treatment time. Plan delivery quality assurance was performed to assess deliverability. RESULTS: It was observed that for helical tomotherapy, intrinsic limitations in leaf open time in the multileaf collimator deteriorate plan quality and deliverability substantially when attempting to deliver very low doses such as 20-40 cGy. The various permutations evaluated revealed that the combination of small FW (1.0 cm), small MF (1.3-1.5), and large pitch (∼0.86), along with the half-gantry-angle-blocked scheme, can generate clinically acceptable plans with acceptable delivery accuracy (±3%). CONCLUSION: Pulsed reduced dose-rate radiotherapy can be accurately delivered using helical tomotherapy for tumor reirradiation when the appropriate combination of FW, MF, and pitch is used.


Subject(s)
Neoplasm Recurrence, Local/radiotherapy , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Axilla , Basal Ganglia , Brain Neoplasms/radiotherapy , Dose Fractionation, Radiation , Feasibility Studies , Heart/radiation effects , Humans , Lung/radiation effects , Melanoma/radiotherapy , Melanoma/secondary , Particle Accelerators , Quality Assurance, Health Care , Radiation Injuries/prevention & control , Radiation Tolerance/radiation effects , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/standards , Retreatment/methods , Spinal Cord/radiation effects
18.
Int J Radiat Oncol Biol Phys ; 81(4): 1190-2, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21035958

ABSTRACT

PURPOSE: In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. METHODS AND MATERIALS: Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. RESULTS: The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. CONCLUSIONS: The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years.


Subject(s)
Internship and Residency , Radiation Oncology/education , Societies, Medical , Curriculum , Humans , Physics/education , Radiology/education , Textbooks as Topic , Time Factors , United States
19.
Radiol Oncol ; 45(3): 220-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22933960

ABSTRACT

BACKGROUND: We have analyzed the stability of CT to density curve of kilovoltage cone-beam computerized tomography (kV CBCT) imaging modality over the period of six months. We also, investigated the viability of using image value to density table (IVDT) generated at different time, for adaptive radiotherapy treatment planning. The consequences of target volume change and the efficacy of kV CBCT for adaptive planning issues is investigated. MATERIALS AND METHODS.: Standard electron density phantom was used to establish CT to electron density calibrations curve. The CT to density curve for the CBCT images were observed for the period of six months. The kV CBCT scans used for adaptive planning was acquired with an on-board imager system mounted on a "Trilogy" linear accelerator. kV CBCT images were acquired for daily setup registration. The effect of variations in CT to density curve was studied on two clinical cases: prostate and lung. RESULTS: The soft tissue contouring is superior in kV CBCT scans in comparison to mega voltage CT (MVCT) scans. The CT to density curve for the CBCT images was found steady over six months. Due to difficulty in attaining the reproducibility in daily setup for the prostate treatment, there is a day-to-day difference in dose to the rectum and bladder. CONCLUSIONS: There is no need for generating a new CT to density curve for the adaptive planning on the kV CBCT images. Also, it is viable to perform the adaptive planning to check the dose to target and organ at risk (OAR) without performing a new kV CT scan, which will reduce the dose to the patient.

20.
J Appl Clin Med Phys ; 11(4): 3229, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-21081878

ABSTRACT

Use of helical TomoTherapy-based MVCT imaging for adaptive planning is becoming increasingly popular. Treatment planning and dose calculations based on MVCT require an image value to electron density calibration to remain stable over the course of treatment time. In this work, we have studied the dosimetric impact on TomoTherapy treatment plans due to variation in image value to density table (IVDT) curve as a function of target degradation. We also have investigated the reproducibility and stability of the TomoTherapy MVCT image quality over time. Multiple scans of the TomoTherapy "Cheese" phantom were performed over a period of five months. Over this period, a difference of 4.7% in the HU values was observed in high-density regions while there was no significant variation in the image values for the low densities of the IVDT curve. Changes in the IVDT curves before and after target replacement were measured. Two clinical treatment sites, pelvis and prostate, were selected to study the dosimetric impact of this variation. Dose was recalculated on the MVCTs with the planned fluence using IVDT curves acquired before and after target change. For the cases studied, target replacement resulted in an overall difference of less than 5%, which can be significant for hypo-fractionated cases. Hence, it is recommended to measure the IVDT curves on a monthly basis and after any major repairs/replacements.


Subject(s)
Pelvic Neoplasms/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Humans , Male , Pelvic Neoplasms/radiotherapy , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...