Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3201, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045440

ABSTRACT

Fragment-based drug design has introduced a bottom-up process for drug development, with improved sampling of chemical space and increased effectiveness in early drug discovery. Here, we combine the use of pharmacophores, the most general concept of representing drug-target interactions with the theory of protein hotspots, to develop a design protocol for fragment libraries. The SpotXplorer approach compiles small fragment libraries that maximize the coverage of experimentally confirmed binding pharmacophores at the most preferred hotspots. The efficiency of this approach is demonstrated with a pilot library of 96 fragment-sized compounds (SpotXplorer0) that is validated on popular target classes and emerging drug targets. Biochemical screening against a set of GPCRs and proteases retrieves compounds containing an average of 70% of known pharmacophores for these targets. More importantly, SpotXplorer0 screening identifies confirmed hits against recently established challenging targets such as the histone methyltransferase SETD2, the main protease (3CLPro) and the NSP3 macrodomain of SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases/chemistry , Coronavirus Papain-Like Proteases/chemistry , Drug Development/methods , Drug Discovery/methods , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/chemistry , Animals , Cell Survival , Chlorocebus aethiops , Computational Chemistry , Crystallography, X-Ray , Databases, Protein , Drug Design , HEK293 Cells , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Protein Binding , Receptors, G-Protein-Coupled/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Small Molecule Libraries , Vero Cells
2.
Proc Natl Acad Sci U S A ; 104(41): 16074-9, 2007 Oct 09.
Article in English | MEDLINE | ID: mdl-17911242

ABSTRACT

Current approaches to inhibit nuclear receptor (NR) activity target the hormone binding pocket but face limitations. We have proposed that inhibitors, which bind to nuclear receptor surfaces that mediate assembly of the receptor's binding partners, might overcome some of these limitations. The androgen receptor (AR) plays a central role in prostate cancer, but conventional inhibitors lose effectiveness as cancer treatments because anti-androgen resistance usually develops. We conducted functional and x-ray screens to identify compounds that bind the AR surface and block binding of coactivators for AR activation function 2 (AF-2). Four compounds that block coactivator binding in solution with IC(50) approximately 50 microM and inhibit AF-2 activity in cells were detected: three nonsteroidal antiinflammatory drugs and the thyroid hormone 3,3',5-triiodothyroacetic acid. Although visualization of compounds at the AR surface reveals weak binding at AF-2, the most potent inhibitors bind preferentially to a previously unknown regulatory surface cleft termed binding function (BF)-3, which is a known target for mutations in prostate cancer and androgen insensitivity syndrome. X-ray structural analysis reveals that 3,3',5-triiodothyroacetic acid binding to BF-3 remodels the adjacent interaction site AF-2 to weaken coactivator binding. Mutation of residues that form BF-3 inhibits AR function and AR AF-2 activity. We propose that BF-3 is a previously unrecognized allosteric regulatory site needed for AR activity in vivo and a possible pharmaceutical target.


Subject(s)
Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Allosteric Site/genetics , Androgen Receptor Antagonists , Animals , Crystallography, X-Ray , In Vitro Techniques , Mice , Models, Molecular , Nuclear Receptor Coactivator 2/metabolism , Protein Structure, Tertiary , Receptors, Androgen/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Bioorg Med Chem ; 13(6): 2141-56, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15727867

ABSTRACT

Trypanosoma cruzi, a protozoan parasite, is the causative agent of Chagas disease, a major cause of cardiovascular disease in many Latin American countries. There is an urgent need to develop an improved therapy due to the toxicity of existing drugs and emerging drug resistance. Cruzain, the primary cysteine protease of T. cruzi, is essential for the survival of the parasite in host cells and therefore is an important target for the development of inhibitors as potential therapeutics. A novel series of alpha-ketoamide-, alpha-ketoacid-, alpha-ketoester-, and aldehyde-based inhibitors of cruzain has been developed. The inhibitors were identified by screening protease targeted small molecule libraries and systematically optimizing the P1, P2, P3, and P1' residues using specific structure-guided methods. A total of 20 compounds displayed picomolar potency in in vitro assays and three inhibitors representing different alpha-keto-based inhibitor scaffolds demonstrated anti-trypanosomal activity in cell culture. A 2.3A crystallographic structure of cruzain bound with one of the alpha-ketoester analogs is also reported. The structure and kinetic assay data illustrate the covalent binding, reversible inhibition mechanism of the inhibitor. Information on the compounds reported here will be useful in the development of new lead compounds as potential therapeutic agents for the treatment of Chagas disease and as biological probes to study the role that cruzain plays in the pathology. This study also demonstrates the validity of structure-guided approaches to focused library design and lead compound optimization.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/parasitology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi/enzymology , Amides/chemistry , Animals , Cell Line , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/therapeutic use , Esters/chemistry , Inhibitory Concentration 50 , Kinetics , Mice , Models, Molecular , Molecular Structure , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
4.
Bioorg Med Chem Lett ; 12(5): 775-8, 2002 Mar 11.
Article in English | MEDLINE | ID: mdl-11859000

ABSTRACT

Novel phenol bis-Mannich adducts were identified as IL-2 expression inhibitors in a T cell proliferation screening assay. Analogues of the lead compound were prepared through parallel synthesis and a highly selective IL-2 inhibitor was discovered that provided a suitable compound for further optimization.


Subject(s)
Interleukin-2/antagonists & inhibitors , Mannich Bases/chemistry , Phenols/chemistry , Piperazines/chemical synthesis , Piperazines/pharmacology , Actins/genetics , Actins/metabolism , DNA Adducts/chemistry , Humans , Inhibitory Concentration 50 , Jurkat Cells/drug effects , Luciferases/metabolism , Promoter Regions, Genetic
5.
J Org Chem ; 61(13): 4434-4438, 1996 Jun 26.
Article in English | MEDLINE | ID: mdl-11667349

ABSTRACT

We describe the asymmetric synthesis of non-peptidic compounds that feature rigid backbone conformations and present various side-chain functions. The key step in the synthesis of these compounds is the C-acylation of an appropriate ketone with a suitably protected aspartic acid derivative. The resulting dipeptide modules may be connected to form tetrapeptide mimics. Specifically is described the mimicry of a four-residue segment of CD4, the cellular receptor of HIV-1. The design was based on molecular modeling and the X-ray crystal structures of CD4 and intended to present the most important side chains and backbone elements of the Phe43-Lys46 segment.

SELECTION OF CITATIONS
SEARCH DETAIL
...