Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38463956

ABSTRACT

Alzheimer's disease (AD) is a major progressive neurodegenerative disorder of the aging population. High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of AD, and we have shown recently that FSH directly activates the hippocampal Fshr to drive AD-like pathology and memory loss in mice. To establish a role for FSH in memory loss, we used female 3xTg;Fshr+/+, 3xTg;Fshr+/- and 3xTg;Fshr-/- mice that were either left unoperated or underwent sham surgery or ovariectomy at 8 weeks of age. Unoperated and sham-operated 3xTg;Fshr-/- mice were implanted with 17ß-estradiol pellets to normalize estradiol levels. Morris Water Maze and Novel Object Recognition behavioral tests were performed to study deficits in spatial and recognition memory, respectively, and to examine the effects of Fshr depletion. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age; both the acquisition and retrieval of the memory were ameliorated in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice- -thus documenting a clear gene-dose-dependent prevention of hippocampal-dependent spatial memory impairment. At 5 and 10 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the acquasition and/or retrieval phases, suggesting that Fshr deletion prevented the progression of spatial memory deficits with age. However, this prevention was not seen when mice were ovariectomized, except in the 10-month-old 3xTg;Fshr-/- mice. In the Novel Object Recognition test performed at 10 months, all groups of mice, except ovariectomized 3xTg;Fshr-/- mice showed a loss of recognition memory. Consistent with the neurobehavioral data, there was a gene-dose-dependent reduction mainly in the amyloid ß40 isoform in whole brain extracts. Finally, serum FSH levels < 8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial and recognition memory deficits in mice, and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of cognitive decline in postmenopausal women.

2.
Biochim Biophys Acta Mol Cell Res ; 1869(5): 119238, 2022 05.
Article in English | MEDLINE | ID: mdl-35150808

ABSTRACT

The aim of this work was to identify elements of adaptive regulatory mechanism for basal level of yeast histone deacetylase Sir2. Heat shock response (HSR) was altered in the absence of the NAD-dependent glycerol 3-phosphate dehydrogenase (Gpd1). Increase in HSR was lower in ΔGpd1 cells than wild-type cells. An inverse correlation existed between Gpd1 and Sir2; Sir2-deleted cells showed higher expression of Gpd1 while deletion of Gpd1 led to higher expression of Sir2. In the absence of Gpd1, basal activity of Sir2 promoter was higher and was increased further upon heat shock, suggesting higher Sir2 levels. No interaction between Gpd1 and Sir2 was detected without or with heat shock using immunoprecipitation. The results show that Gpd1 regulates HSR in yeast cells and likely blocks its uncontrolled activation. As uncontrolled stress adversely affects the cellular adaptive response, Gpd1 may be a component of the cell's catalogue to ensure a balanced response to unmitigated thermal stress.


Subject(s)
Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism , Heat-Shock Response , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Gene Expression Regulation, Fungal , Glycerol-3-Phosphate Dehydrogenase (NAD+)/genetics , Heat-Shock Response/genetics , Mutagenesis, Site-Directed , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sirtuin 2/genetics , Sirtuin 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...