Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Nanobiotechnology ; 22(1): 115, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493118

ABSTRACT

Photoacoustic (PA) imaging is a diagnostic modality that combines the high contrast resolution of optical imaging with the high tissue penetration of ultrasound. While certain endogenous chromophores can be visualized via PA imaging, many diagnostic assessments require the administration of external probes. Anisotropic gold nanoparticles are particularly valued as contrast agents, since they produce strong PA signals and do not photobleach. However, the synthesis of anisotropic nanoparticles typically requires cytotoxic reagents, which can hinder their biological application. In this work, we developed new PA probes based on nanostar cores and polymeric shells. These AuNS were obtained through one-pot synthesis with biocompatible Good's buffers, and were subsequently functionalized with polyethylene glycol, chitosan or melanin, three coatings widely used in (pre)clinical research. Notably, the structural features of the nanostar cores strongly affected the PA signal. For instance, despite displaying similar sizes (i.e. 45 nm), AuNS obtained with MOPS buffer generated between 2 and 3-fold greater signal intensities in the region between 700 and 800 nm than nanostars obtained with HEPES and EPPS buffers, and up to 25-fold stronger signals than spherical gold nanoparticles. A point source analytical model demonstrated that AuNS synthesized with MOPS displayed greater absorption coefficients than the other particles, corroborating the stronger PA responses. Furthermore, the AuNS shell not only improved the biocompatibility of the nanoconstructs but also affected their performance, with melanin coating enhancing the signal more than 4-fold, due to its own PA capacity, as demonstrated by both in vitro and ex vivo imaging. Taken together, these results highlight the strengths of gold nanoconstructs as PA probes and offer insights into the design rules for the nanoengineering of new nanodiagnostic agents.


Subject(s)
Metal Nanoparticles , Photoacoustic Techniques , Metal Nanoparticles/chemistry , Gold/chemistry , Melanins , Optical Imaging
2.
J Mater Chem B ; 12(10): 2511-2522, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38334758

ABSTRACT

Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by in vitro imaging in serum and whole blood, and ex vivo imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.


Subject(s)
Contrast Media , Microbubbles , Mice , Animals , Ultrasonography/methods , Polymers/chemistry , Multimodal Imaging
3.
ACS Biomater Sci Eng ; 10(1): 38-50, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37249042

ABSTRACT

Gold nanostars (AuNSs) are nanoparticles with intricate three-dimensional structures and shape-dependent optoelectronic properties. For example, AuNSs uniquely display three distinct surface curvatures, i.e. neutral, positive, and negative, which provide different environments to adsorbed ligands. Hence, these curvatures are used to introduce different surface chemistries in nanoparticles. This review summarizes and discusses the role of surface curvature in AuNS properties and its impact on biomedical and chemical applications, including surface-enhanced Raman spectroscopy, contrast agent performance, and catalysis. We examine the main synthetic approaches to generate AuNSs, control their morphology, and discuss their benefits and drawbacks. We also describe the optical characteristics of AuNSs and discuss how these depend on nanoparticle morphology. Finally, we analyze how AuNS surface curvature endows them with properties distinctly different from those of other nanoparticles, such as strong electromagnetic fields at the tips and increased hydrophilic environments at the indentations, together making AuNSs uniquely useful for biosensing, imaging, and local chemical manipulation.


Subject(s)
Gold , Nanoparticles , Gold/chemistry , Nanoparticles/chemistry , Spectrum Analysis, Raman
4.
Adv Mater ; 35(52): e2308150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949438

ABSTRACT

Microbubbles (MB) are widely used for ultrasound (US) imaging and drug delivery. MB are typically spherically shaped, due to surface tension. When heated above their glass transition temperature, polymer-based MB can be mechanically stretched to obtain an anisotropic shape, endowing them with unique features for US-mediated blood-brain barrier (BBB) permeation. It is here shown that nonspherical MB can be surface-modified with BBB-specific targeting ligands, thereby promoting binding to and sonopermeation of blood vessels in the brain. Actively targeted rod-shaped MB are generated via 1D stretching of spherical poly(butyl cyanoacrylate) MB and via subsequently functionalizing their shell with antitransferrin receptor (TfR) antibodies. Using US and optical imaging, it is demonstrated that nonspherical anti-TfR-MB bind more efficiently to BBB endothelium than spherical anti-TfR-MB, both in vitro and in vivo. BBB-associated anisotropic MB produce stronger cavitation signals and markedly enhance BBB permeation and delivery of a model drug as compared to spherical BBB-targeted MB. These findings exemplify the potential of antibody-modified nonspherical MB for targeted and triggered drug delivery to the brain.


Subject(s)
Blood-Brain Barrier , Microbubbles , Receptors, Transferrin , Sonication , Blood-Brain Barrier/metabolism , Receptors, Transferrin/metabolism , Ligands , Drug Delivery Systems , Antibodies , Animals , Mice , Female , Mice, Inbred BALB C , Cell Line , Endothelial Cells/metabolism
5.
Chem Sci ; 14(43): 11941-11954, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37969594

ABSTRACT

Ultrasound (US) is routinely used for diagnostic imaging and increasingly employed for therapeutic applications. Materials that act as cavitation nuclei can improve the resolution of US imaging, and facilitate therapeutic US procedures by promoting local drug delivery or allowing temporary biological barrier opening at moderate acoustic powers. Polymeric materials offer a high degree of control over physicochemical features concerning responsiveness to US, e.g. via tuning chain composition, length and rigidity. This level of control cannot be achieved by materials made of lipids or proteins. In this perspective, we present key engineered polymeric materials that respond to US, including microbubbles, gas-stabilizing nanocups, microcapsules and gas-releasing nanoparticles, and discuss their formulation aspects as well as their principles of US responsiveness. Focusing on microbubbles as the most common US-responsive polymeric materials, we further evaluate the available chemical toolbox to engineer polymer shell properties and enhance their performance in US imaging and US-mediated drug delivery. Additionally, we summarize emerging applications of polymeric microbubbles in molecular imaging, sonopermeation, and gas and drug delivery, based on refinement of MB shell properties. Altogether, this manuscript provides new perspectives on US-responsive polymeric designs, envisaging their current and future applications in US imaging and therapy.

6.
Metallomics ; 15(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37336558

ABSTRACT

Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.


Subject(s)
Lanthanoid Series Elements , Saccharomyces cerevisiae , Humans , Lanthanoid Series Elements/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
8.
Proc Natl Acad Sci U S A ; 120(13): e2218847120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36940339

ABSTRACT

Surface tension provides microbubbles (MB) with a perfect spherical shape. Here, we demonstrate that MB can be engineered to be nonspherical, endowing them with unique features for biomedical applications. Anisotropic MB were generated via one-dimensionally stretching spherical poly(butyl cyanoacrylate) MB above their glass transition temperature. Compared to their spherical counterparts, nonspherical polymeric MB displayed superior performance in multiple ways, including i) increased margination behavior in blood vessel-like flow chambers, ii) reduced macrophage uptake in vitro, iii) prolonged circulation time in vivo, and iv) enhanced blood-brain barrier (BBB) permeation in vivo upon combination with transcranial focused ultrasound (FUS). Our studies identify shape as a design parameter in the MB landscape, and they provide a rational and robust framework for further exploring the application of anisotropic MB for ultrasound-enhanced drug delivery and imaging applications.


Subject(s)
Blood-Brain Barrier , Microbubbles , Blood-Brain Barrier/diagnostic imaging , Ultrasonography , Biological Transport , Drug Delivery Systems
9.
Drug Deliv Transl Res ; 13(2): 378-385, 2023 02.
Article in English | MEDLINE | ID: mdl-36045273

ABSTRACT

Gold nanoparticles display unique physicochemical features, which can be useful for therapeutic purposes. After two decades of preclinical progress, gold nanoconstructs are slowly but steadily transitioning into clinical trials. Although initially thought to be "magic golden bullets" that could be used to treat a wide range of diseases, current consensus has moved toward a more realistic approach, where gold nanoformulations are being investigated to treat specific disorders. These therapeutic applications are dictated by the pharmacokinetics and biodistribution profiles of gold nanoparticles. Here, we analyze the current clinical landscape of therapeutic gold nanoconstructs, discuss the shared characteristics that allowed for their transition from bench to bedside, and examine existing hurdles that need to be overcome before they can be approved for clinical use.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Metal Nanoparticles/therapeutic use , Gold/pharmacokinetics , Tissue Distribution , Nanomedicine , Neoplasms/drug therapy
10.
ACS Omega ; 7(38): 34412-34419, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188298

ABSTRACT

Lanthanides are a series of elements essential to a wide range of applications, from clean energy production to healthcare. Despite their presence in multiple products and technologies, their toxicological characteristics have been only partly studied. Recently, our group has employed a genomic approach to extensively characterize the toxicity mechanisms of lanthanides. Even though we identified substantially different behaviors for mid and late lanthanides, the toxicological profiles of early lanthanides remained elusive. Here, we overcome this gap by describing a multidimensional genome-wide toxicogenomic study for two early lanthanides, namely, lanthanum and praseodymium. We used Saccharomyces cerevisiae as a model system since its genome shares many biological pathways with humans. By performing functional analysis and protein-protein interaction network analysis, we identified the main genes and proteins that participate in the yeast response to counter metal harmful effects. Moreover, our analysis also highlighted key enzymes that are dysregulated by early lanthanides, inducing cytotoxicity. Several of these genes and proteins have human orthologues, indicating that they may also participate in the human response against the metals. By highlighting the key genes and proteins in lanthanide-induced toxicity, this work may contribute to the development of new prophylactic and therapeutic strategies against lanthanide harmful exposures.

11.
J Nucl Med ; 63(12): 1802-1808, 2022 12.
Article in English | MEDLINE | ID: mdl-36302654

ABSTRACT

Nanoparticles possess unique features that may be useful for disease diagnosis and therapy. Preclinically, many different nanodiagnostics have been explored, but only a few have made it to the market. We here provide an overview of nanoparticle-based imaging agents currently used and evaluated in the clinic and discuss preclinical progress and translational avenues for the use of nanoparticles for diagnostic and theranostic applications.


Subject(s)
Nanoparticles , Neoplasms , Humans , Nanoparticles/therapeutic use , Neoplasms/therapy , Precision Medicine/methods , Theranostic Nanomedicine/methods
12.
ACS Biomater Sci Eng ; 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36315422

ABSTRACT

Microbubbles (MB) are used as ultrasound (US) contrast agents in clinical settings because of their ability to oscillate upon exposure to acoustic pulses and generate nonlinear responses with a stable cavitation profile. Polymeric MB have recently attracted increasing attention as molecular imaging probes and drug delivery agents based on their tailorable acoustic responses, high drug loading capacity, and surface functionalization capabilities. While many of these applications require MB to be functionalized with biological ligands, the impact of bioconjugation on polymeric MB cavitation and acoustic properties remains poorly understood. Hence, we here evaluated the effects of MB shell hydrolysis and subsequent streptavidin conjugation on the acoustic behavior of poly(butyl cyanoacrylate) (PBCA) MB. We show that upon biofunctionalization, MB display higher acoustic stability, stronger stable cavitation, and enhanced second harmonic generation. Furthermore, functionalized MB preserve the binding capabilities of streptavidin conjugated on their surface. These findings provide insights into the effects of bioconjugation chemistry on polymeric MB acoustic properties, and they contribute to improving the performance of polymer-based US imaging and theranostic agents.

13.
Mol Pharm ; 19(9): 3256-3266, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35905480

ABSTRACT

Gas-filled microbubbles (MB) are routinely used in the clinic as ultrasound contrast agents. MB are also increasingly explored as drug delivery vehicles based on their ultrasound stimuli-responsiveness and well-established shell functionalization routes. Broadening the range of MB properties can enhance their performance in both imaging and drug delivery applications. This can be promoted by systematically varying the reagents used in the synthesis of MB, which in the case of polymeric MB include surfactants. We therefore set out to study the effect of key surfactant characteristics, such as the chemical structure, molecular weight, and hydrophilic-lipophilic balance on the formation of poly(butyl cyanoacrylate) (PBCA) MB, as well as on their properties, including shell thickness, drug loading capacity, ultrasound contrast, and acoustic stability. Two different surfactant families (i.e., Triton X and Tween) were employed, which show opposite molecular weight vs hydrophilic-lipophilic balance trends. For both surfactant types, we found that the shell thickness of PBCA MB increased with higher-molecular-weight surfactants and that the resulting MB with thicker shells showed higher drug loading capacities and acoustic stability. Furthermore, the higher proportion of smaller polymer chains of the Triton X-based MB (as compared to those of the Tween-based ones) resulted in lower polymer entanglement, improving drug loading capacity and ultrasound contrast response. These findings open up new avenues to fine-tune the shell properties of polymer-based MB for enhanced ultrasound imaging and drug delivery applications.


Subject(s)
Microbubbles , Surface-Active Agents , Acoustics , Contrast Media/chemistry , Humans , Octoxynol , Pharmaceutical Preparations , Polymers/chemistry , Polysorbates , Surface-Active Agents/chemistry
14.
Chem Soc Rev ; 51(7): 2544-2582, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35262108

ABSTRACT

Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Humans , Immunotherapy , Nanomedicine/methods , Neoplasms/drug therapy
15.
Mol Omics ; 18(3): 237-248, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35040455

ABSTRACT

Gadolinium is a metal used in contrast agents for magnetic resonance imaging. Although gadolinium is widely used in clinical settings, many concerns regarding its toxicity and bioaccumulation after gadolinium-based contrast agent administration have been raised and published over the last decade. To date, most toxicological studies have focused on identifying acute effects following gadolinium exposure, rather than investigating associated toxicity mechanisms. In this study, we employ functional toxicogenomics to assess mechanistic interactions of gadolinium with Saccharomyces cerevisiae. Furthermore, we determine which mechanisms are conserved in humans, and their implications for diseases related to the use of gadolinium-based contrast agents in medicine. A homozygous deletion pool of 4291 strains were screened to identify biological functions and pathways disturbed by the metal. Gene ontology and pathway enrichment analyses showed endocytosis and vesicle-mediated transport as the main yeast response to gadolinium, while certain metabolic processes, such as glycosylation, were the primary disrupted functions after the metal treatments. Cluster and protein-protein interaction network analyses identified proteins mediating vesicle-mediated transport through the Golgi apparatus and the vacuole, and vesicle cargo exocytosis as key components to reduce the metal toxicity. Moreover, the metal seemed to induce cytotoxicity by disrupting the function of enzymes (e.g. transferases and proteases) and chaperones involved in metabolic processes. Several of the genes and proteins associated with gadolinium toxicity are conserved in humans, suggesting that they may participate in pathologies linked to gadolinium-based contrast agent exposures. We thereby discuss the potential role of these conserved genes and gene products in gadolinium-induced nephrogenic systemic fibrosis, and propose potential prophylactic strategies to prevent its adverse health effects.


Subject(s)
Contrast Media , Gadolinium , Contrast Media/toxicity , Gadolinium/toxicity , Homozygote , Humans , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/methods , Saccharomyces cerevisiae/genetics , Sequence Deletion , Toxicogenetics
16.
J Am Chem Soc ; 144(2): 854-861, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34985894

ABSTRACT

Rare-earth elements, which include the lanthanide series, are key components of many clean energy technologies, including wind turbines and photovoltaics. Because most of these 4f metals are at high risk of supply chain disruption, the development of new recovery technologies is necessary to avoid future shortages, which may impact renewable energy production. This paper reports the synthesis of a non-natural biogenic material as a potential platform for bioinspired lanthanide extraction. The biogenic material takes advantage of the atomically precise structure of a 2D crystalline protein lattice with the high lanthanide binding affinity of hydroxypyridinonate chelators. Luminescence titration data demonstrated that the engineered protein layers have affinities for all tested lanthanides in the micromolar-range (dissociation constants) and a higher binding affinity for the lanthanide ions with a smaller ionic radius. Furthermore, competitive titrations confirmed the higher selectivity (up to several orders of magnitude) of the biogenic material for lanthanides compared to other cations commonly found in f-element sources. Lastly, the functionalized protein layers could be reused in several cycles by desorbing the bound metal with citrate solutions. Taken together, these results highlight biogenic materials as promising bioadsorption platforms for the selective binding of lanthanides, with potential applications in the recovery of these critical elements from waste.


Subject(s)
Chelating Agents/chemistry , Metals, Rare Earth/analysis , Proteins/chemistry , Hydrogen-Ion Concentration , Lanthanoid Series Elements/analysis , Lanthanoid Series Elements/isolation & purification , Lanthanoid Series Elements/metabolism , Ligands , Metals, Rare Earth/isolation & purification , Metals, Rare Earth/metabolism , Proteins/metabolism , Pyridines/chemistry , Spectrophotometry
17.
Front Med (Lausanne) ; 9: 1020188, 2022.
Article in English | MEDLINE | ID: mdl-36619636

ABSTRACT

Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.

18.
Metallomics ; 13(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34694395

ABSTRACT

Europium is a lanthanide metal that is highly valued in optoelectronics. Even though europium is used in many commercial products, its toxicological profile has only been partially characterized, with most studies focusing on identifying lethal doses in different systems or bioaccumulation in vivo. This paper describes a genome-wide toxicogenomic study of europium in Saccharomyces cerevisiae, which shares many biological functions with humans. By using a multidimensional approach and functional and network analyses, we have identified a group of genes and proteins associated with the yeast responses to ameliorate metal toxicity, which include metal discharge paths through vesicle-mediated transport, paths to regulate biologically relevant cations, and processes to reduce metal-induced stress. Furthermore, the analyses indicated that europium promotes yeast toxicity by disrupting the function of chaperones and cochaperones, which have metal-binding sites. Several of the genes and proteins highlighted in our study have human orthologues, suggesting they may participate in europium-induced toxicity in humans. By identifying the endogenous targets of europium as well as the already existing paths that can decrease its toxicity, we can determine specific genes and proteins that may help to develop future therapeutic strategies.


Subject(s)
Europium/toxicity , Genome, Fungal , Saccharomyces cerevisiae/drug effects , Europium/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Toxicogenetics
19.
Chem Sci ; 12(14): 5295-5301, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-34168780

ABSTRACT

Transplutonium actinides are among the heaviest elements whose macroscale chemical properties can be experimentally tested. Being scarce and hazardous, their chemistry is rather unexplored, and they have traditionally been considered a rather homogeneous group, with most of their characteristics extrapolated from lanthanide surrogates. Newly emerged applications for these elements, combined with their persistent presence in nuclear waste, however, call for a better understanding of their behavior in complex living systems. In this work, we explored the biodistribution and excretion profiles of four transplutonium actinides (248Cm, 249Bk, 249Cf and 253Es) in a small animal model, and evaluated their in vivo sequestration and decorporation by two therapeutic chelators, diethylenetriamine pentaacetic acid and 3,4,3-LI(1,2-HOPO). Notably, the organ deposition patterns of those transplutonium actinides were element-dependent, particularly in the liver and skeleton, where lower atomic number radionuclides showed up to 7-fold larger liver/skeleton accumulation ratios. Nevertheless, the metal content in multiple organs was significantly decreased for all tested actinides, particularly in the liver, after administering the therapeutic agent 3,4,3-LI(1,2-HOPO) post-contamination. Lastly, the systematic comparison of the radionuclide biodistributions showed discernibly element-dependent organ depositions, which may provide insights into design rules for new bio-inspired chelating systems with high sequestration and separation performance.

20.
Methods Enzymol ; 651: 139-155, 2021.
Article in English | MEDLINE | ID: mdl-33888202

ABSTRACT

Single crystal X-ray diffraction is a technique that measures interatomic distances with atomic resolution. Utilizing this technique for metal complexes featuring lanthanide and actinide elements is complicated by the scarcity and radioactivity of many of the metals of the f-block, as sub-milligram samples are difficult to crystallize for small molecule X-ray diffraction experiments. In this chapter, we present a protocol developed in our group that circumvents these challenges by exploiting macromolecular crystallography, wherein a protein with a large and well-characterized binding calyx is used as a scaffold to crystallize small-molecule metal complexes. Highlighting several examples, we identify the structural and chemical information that can be acquired by this method, and delineate the benefits of directing crystal growth with proteins, such as decreasing the amount of metal used to the sub-microgram scale. Moreover, since protein recognition depends on the nature of the metal-chelator bonds, subtle effects in the lanthanide and actinide coordination chemistry, such as metal-ligand covalency, can be qualitatively assessed.


Subject(s)
Lanthanoid Series Elements , Crystallography, X-Ray , Ligands , Macromolecular Substances , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...