Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(10): 6987-6990, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38670541

ABSTRACT

Humilisin E is a diterpenoid possessing a rare epoxidized cyclononene trans-fused with a bicyclo[3.2.0]heptane core. We have identified the P atropisomer of the corresponding cyclononadiene as a potential biosynthetic/synthetic precursor to humilisin E and reported two different strategies for the stereocontrolled synthesis of the appropriately functionalized bicyclic cores of humilisin E. The first route involves a Stork epoxynitrile cyclization via a Mg alkoxide, and the second, more stereoselective approach utilizes the Wolff rearrangement as the key step.

2.
J Phys Chem Lett ; 11(6): 2177-2181, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32109070

ABSTRACT

Photoactivation in the Photoactive Yellow Protein, a bacterial blue-light photoreceptor, proceeds via photoisomerization of the double C═C bond in the covalently attached chromophore. Quantum chemistry calculations, however, have suggested that in addition to double-bond photoisomerization, the isolated chromophore and many of its analogues can isomerize around a single C-C bond as well. Whereas double-bond photoisomerization has been observed with X-ray crystallography, experimental evidence of single-bond photoisomerization is currently lacking. Therefore, we have synthesized a chromophore analogue, in which the formal double bond is covalently locked in a cyclopentenone ring, and carried out transient absorption spectroscopy experiments in combination with nonadiabatic molecular dynamics simulations to reveal that the locked chromophore isomerizes around the single bond upon photoactivation. Our work thus provides experimental evidence of single-bond photoisomerization in a photoactive yellow protein chromophore analogue and suggests that photoisomerization is not restricted to the double bonds in conjugated systems. This insight may be useful for designing light-driven molecular switches or motors.


Subject(s)
Photochemistry/methods , Proteins/chemistry , Bisphenol A-Glycidyl Methacrylate , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...