Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(15): 8512-8528, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35920318

ABSTRACT

Cold shock adaptability is a key survival skill of gut bacteria of warm-blooded animals. Escherichia coli cold shock responses are controlled by a complex multi-gene, timely-ordered transcriptional program. We investigated its underlying mechanisms. Having identified short-term, cold shock repressed genes, we show that their responsiveness is unrelated to their transcription factors or global regulators, while their single-cell protein numbers' variability increases after cold shock. We hypothesized that some cold shock repressed genes could be triggered by high propensity for transcription locking due to changes in DNA supercoiling (likely due to DNA relaxation caused by an overall reduction in negative supercoiling). Concomitantly, we found that nearly half of cold shock repressed genes are also highly responsive to gyrase inhibition (albeit most genes responsive to gyrase inhibition are not cold shock responsive). Further, their response strengths to cold shock and gyrase inhibition correlate. Meanwhile, under cold shock, nucleoid density increases, and gyrases and nucleoid become more colocalized. Moreover, the cellular energy decreases, which may hinder positive supercoils resolution. Overall, we conclude that sensitivity to diminished negative supercoiling is a core feature of E. coli's short-term, cold shock transcriptional program, and could be used to regulate the temperature sensitivity of synthetic circuits.


Subject(s)
DNA, Superhelical , Escherichia coli , Cold-Shock Response/genetics , DNA/metabolism , DNA Gyrase/genetics , DNA Gyrase/metabolism , DNA, Superhelical/genetics , DNA, Superhelical/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
2.
Biochim Biophys Acta Gene Regul Mech ; 1865(3): 194812, 2022 04.
Article in English | MEDLINE | ID: mdl-35338024

ABSTRACT

Escherichia coli uses σ factors to quickly control large gene cohorts during stress conditions. While most of its genes respond to a single σ factor, approximately 5% of them have dual σ factor preference. The most common are those responsive to both σ70, which controls housekeeping genes, and σ38, which activates genes during stationary growth and stresses. Using RNA-seq and flow-cytometry measurements, we show that 'σ70+38 genes' are nearly as upregulated in stationary growth as 'σ38 genes'. Moreover, we find a clear quantitative relationship between their promoter sequence and their response strength to changes in σ38 levels. We then propose and validate a sequence dependent model of σ70+38 genes, with dual sensitivity to σ38 and σ70, that is applicable in the exponential and stationary growth phases, as well in the transient period in between. We further propose a general model, applicable to other stresses and σ factor combinations. Given this, promoters controlling σ70+38 genes (and variants) could become important building blocks of synthetic circuits with predictable, sequence-dependent sensitivity to transitions between the exponential and stationary growth phases.


Subject(s)
Escherichia coli Proteins , Sigma Factor , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Sigma Factor/genetics , Sigma Factor/metabolism
3.
PLoS Comput Biol ; 18(1): e1009824, 2022 01.
Article in English | MEDLINE | ID: mdl-35100257

ABSTRACT

Closely spaced promoters in tandem formation are abundant in bacteria. We investigated the evolutionary conservation, biological functions, and the RNA and single-cell protein expression of genes regulated by tandem promoters in E. coli. We also studied the sequence (distance between transcription start sites 'dTSS', pause sequences, and distances from oriC) and potential influence of the input transcription factors of these promoters. From this, we propose an analytical model of gene expression based on measured expression dynamics, where RNAP-promoter occupancy times and dTSS are the key regulators of transcription interference due to TSS occlusion by RNAP at one of the promoters (when dTSS ≤ 35 bp) and RNAP occupancy of the downstream promoter (when dTSS > 35 bp). Occlusion and downstream promoter occupancy are modeled as linear functions of occupancy time, while the influence of dTSS is implemented by a continuous step function, fit to in vivo data on mean single-cell protein numbers of 30 natural genes controlled by tandem promoters. The best-fitting step is at 35 bp, matching the length of DNA occupied by RNAP in the open complex formation. This model accurately predicts the squared coefficient of variation and skewness of the natural single-cell protein numbers as a function of dTSS. Additional predictions suggest that promoters in tandem formation can cover a wide range of transcription dynamics within realistic intervals of parameter values. By accurately capturing the dynamics of these promoters, this model can be helpful to predict the dynamics of new promoters and contribute to the expansion of the repertoire of expression dynamics available to synthetic genetic constructs.


Subject(s)
Escherichia coli/genetics , Promoter Regions, Genetic , DNA, Bacterial/genetics , Gene Expression , Kinetics , Transcription, Genetic
4.
Biochim Biophys Acta Gene Regul Mech ; 1863(5): 194515, 2020 05.
Article in English | MEDLINE | ID: mdl-32113983

ABSTRACT

Positive supercoiling buildup (PSB) is a pervasive phenomenon in the transcriptional programs of Escherichia coli. After finding a range of Gyrase concentrations where the inverse of the transcription rate of a chromosome-integrated gene changes linearly with the inverse of Gyrase concentration, we apply a LineWeaver-Burk plot to dissect the expected in vivo transcription rate in absence of PSB. We validate the estimation by time-lapse microscopy of single-RNA production kinetics of the same gene when single-copy plasmid-borne, shown to be impervious to Gyrase inhibition. Next, we estimate the fraction of time in locked states and number of transcription events prior to locking, which we validate by measurements under Gyrase inhibition. Replacing the gene of interest by one with slower transcription rate decreases the fraction of time in locked states due to PSB. Finally, we combine data from both constructs to infer a range of possible transcription initiation locking kinetics in a chromosomal location, obtainable by tuning the transcription rate. We validate with measurements of transcription activity at different induction levels. This strategy for dissecting transcription initiation locking kinetics due to PSB can contribute to resolve the transcriptional programs of E. coli and in the engineering of synthetic genetic circuits.


Subject(s)
Computer Simulation , DNA Gyrase/metabolism , DNA, Bacterial/genetics , DNA, Superhelical/genetics , Escherichia coli Proteins/metabolism , Transcription Initiation, Genetic , DNA, Bacterial/chemistry , DNA, Superhelical/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Kinetics , Novobiocin/pharmacology , RNA/genetics , RNA/metabolism , Topoisomerase II Inhibitors/pharmacology
5.
J Microbiol Methods ; 166: 105745, 2019 11.
Article in English | MEDLINE | ID: mdl-31654657

ABSTRACT

Estimating the statistics of single-cell RNA numbers has become a key source of information on gene expression dynamics. One of the most informative methods of in vivo single-RNA detection is MS2d-GFP tagging. So far, it requires microscopy and laborious semi-manual image analysis, which hampers the amount of collectable data. To overcome this limitation, we present a new methodology for quantifying the mean, standard deviation, and skewness of single-cell distributions of RNA numbers, from flow cytometry data on cells expressing RNA tagged with MS2d-GFP. The quantification method, based on scaling flow-cytometry data from microscopy single-cell data on integer-valued RNA numbers, is shown to readily produce precise, big data on in vivo single-cell distributions of RNA numbers and, thus, can assist in studies of transcription dynamics.


Subject(s)
Escherichia coli/genetics , Flow Cytometry/methods , RNA, Bacterial/analysis , Single-Cell Analysis/methods , Fluorescent Dyes/chemistry , Gene Expression/genetics , Microscopy/methods
6.
Phys Biol ; 15(2): 026007, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29182518

ABSTRACT

From in vivo single-cell, single-RNA measurements of the activation times and subsequent steady-state active transcription kinetics of a single-copy Lac-ara-1 promoter in Escherichia coli, we characterize the intake kinetics of the inducer (IPTG) from the media, following temperature shifts. For this, for temperature shifts of various degrees, we obtain the distributions of transcription activation times as well as the distributions of intervals between consecutive RNA productions following activation in individual cells. We then propose a novel methodology that makes use of deconvolution techniques to extract the mean and the variability of the distribution of intake times. We find that cells, following shifts to low temperatures, have higher intake times, although, counter-intuitively, the cell-to-cell variability of these times is lower. We validate the results using a new methodology for direct estimation of mean intake times from measurements of activation times at various inducer concentrations. The results confirm that E. coli's inducer intake times from the environment are significantly higher following a shift to a sub-optimal temperature. Finally, we provide evidence that this is likely due to the emergence of additional rate-limiting steps in the intake process at low temperatures, explaining the reduced cell-to-cell variability in intake times.


Subject(s)
Escherichia coli/genetics , Single-Cell Analysis , Temperature , Transcriptional Activation , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...