Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38140468

ABSTRACT

Plant cells secrete membrane-enclosed micrometer- and nanometer-sized vesicles that, similarly to the extracellular vesicles (EVs) released by mammalian or bacterial cells, carry a complex molecular cargo of proteins, nucleic acids, lipids, and primary and secondary metabolites. While it is technically complicated to isolate EVs from whole plants or their tissues, in vitro plant cell cultures provide excellent model systems for their study. Plant EVs have been isolated from the conditioned culture media of plant cell, pollen, hairy root, and protoplast cultures, and recent studies have gathered important structural and biological data that provide a framework to decipher their physiological roles and unveil previously unacknowledged links to their diverse biological functions. The primary function of plant EVs seems to be in the secretion that underlies cell growth and morphogenesis, cell wall composition, and cell-cell communication processes. Besides their physiological functions, plant EVs may participate in defence mechanisms against different plant pathogens, including fungi, viruses, and bacteria. Whereas edible and medicinal-plant-derived nanovesicles isolated from homogenised plant materials ex vivo are widely studied and exploited, today, plant EV research is still in its infancy. This review, for the first time, highlights the different in vitro sources that have been used to isolate plant EVs, together with the structural and biological studies that investigate the molecular cargo, and pinpoints the possible role of plant EVs as mediators in plant-pathogen interactions, which may contribute to opening up new scenarios for agricultural applications, biotechnology, and innovative strategies for plant disease management.

2.
Entropy (Basel) ; 25(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37510051

ABSTRACT

Nowadays, various fields in environmental sciences require the availability of appropriate techniques to exploit the information given by multivariate spatial or spatio-temporal observations. In particular, radon flux data which are of high interest to monitor greenhouse gas emissions and to assess human exposure to indoor radon are determined by the deposit of uranium and radio (precursor elements). Furthermore, they are also affected by various atmospheric variables, such as humidity, temperature, precipitation and evapotranspiration. To this aim, a significant role can be recognized to the tools of multivariate geostatistics which supports the modeling and prediction of variables under study. In this paper, the spatio-temporal distribution of radon flux densities over the Veneto Region (Italy) and its estimation at unsampled points in space and time are discussed. In particular, the spatio-temporal linear coregionalization model is identified on the basis of the joint diagonalization of the empirical covariance matrices evaluated at different spatio-temporal lags and is used to produce predicted radon flux maps for different months. Probability maps, that the radon flux density in the upcoming months is greater than three historical statistics, are then built. This might be of interest especially in summer months when the risk of radon exhalation is higher. Moreover, a comparison with respect to alternative models in the univariate and multivariate context is provided.

3.
BMC Prim Care ; 23(1): 297, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36424550

ABSTRACT

BACKGROUND: Sustained, routine care is vital to the health of people with HIV (PWH) and decreasing transmission of HIV. We evaluated whether the identification of PWH at-risk of falling out of care and prompts for outreach were effective in retaining PWH in care in the United States. METHODS: In this cluster randomized controlled trial, 20 AIDS Healthcare Foundation Healthcare Centers (HCCs) were randomized to the intervention (n = 10) or control (n = 10) arm; all maintained existing retention efforts. The intervention included daily automated flags in CHORUS™, a mobile app and web-based reporting solution utilizing electronic health record data, that identified PWH at-risk of falling out of care to clinic staff. Among flagged PWH, the association between the intervention and visits after a flag was assessed using logistic regression models fit with generalized estimating equations (independent correlation structure) to account for clustering. To adjust for differences between HCCs, models included geographic region, number of PWH at HCC, and proportions of PWH who self-identified as Hispanic or had the Ryan White Program as a payer. RESULTS: Of 15,875 PWH in care, 56% were flagged; 76% (intervention) and 75% (control) resulted in a visit, of which 76% were within 2 months of the flag. In adjusted analyses, flags had higher odds of being followed by a visit (odds ratio [OR]: 1.08, 95% confidence interval [CI]: 0.97, 1.21) or a visit within 2 months (OR: 1.07, 95% CI: 0.97, 1.17) at intervention than control HCCs. Among at-risk PWH with viral loads at baseline and study end, the proportion with < 50 copies/mL increased in both study arms, but more so at intervention (65% to 74%) than control (62% to 67%) HCCs. CONCLUSION: Despite challenges of the COVID-19 pandemic, adding an intervention to existing retention efforts, and the reality that behavior change takes time, PWH flagged as at-risk of falling out of care were marginally more likely to return for care at intervention than control HCCs and a greater proportion achieved undetectability. Sustained use of the retention module in CHORUS™ has the potential to streamline retention efforts, retain more PWH in care, and ultimately decrease transmission of HIV. TRIAL REGISTRATION: The study was first registered at Clinical Trials.gov (NCT04147832, https://clinicaltrials.gov/show/NCT04147832 ) on 01/11/2019.


Subject(s)
Continuity of Patient Care , HIV Infections , Retention in Care , Humans , Ambulatory Care Facilities , Carcinoma, Hepatocellular , COVID-19/epidemiology , HIV Infections/epidemiology , Liver Neoplasms , Pandemics , United States/epidemiology , Decision Support Systems, Clinical
4.
Plants (Basel) ; 11(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36297696

ABSTRACT

Sustainable agricultural systems based on the application of phyto-friendly bacteria and fungi are increasingly needed to preserve soil fertility and microbial biodiversity, as well as to reduce the use of chemical fertilizers and pesticides. Although there is considerable attention on the potential applications of microbial consortia as biofertilizers and biocontrol agents for crop management, knowledge on the molecular responses modulated in host plants because of these beneficial associations is still incomplete. This review provides an up-to-date overview of the different mechanisms of action triggered by plant-growth-promoting microorganisms (PGPMs) to promote host-plant growth and improve its defense system. In addition, we combined available gene-expression profiling data from tomato roots sampled in the early stages of interaction with Pseudomonas or Trichoderma strains to develop an integrated model that describes the common processes activated by both PGPMs and highlights the host's different responses to the two microorganisms. All the information gathered will help define new strategies for the selection of crop varieties with a better ability to benefit from the elicitation of microbial inoculants.

5.
Front Plant Sci ; 13: 913374, 2022.
Article in English | MEDLINE | ID: mdl-35845700

ABSTRACT

The development of effective tools for the sustainable supply of phyto-ingredients and natural substances with reduced environmental footprints can help mitigate the dramatic scenario of climate change. Plant cell cultures-based biorefineries can be a technological advancement to face this challenge and offer a potentially unlimited availability of natural substances, in a standardized composition and devoid of the seasonal variability of cultivated plants. Monounsaturated (MUFA) fatty acids are attracting considerable attention as supplements for biodegradable plastics, bio-additives for the cosmetic industry, and bio-lubricants. Cardoon (Cynara cardunculus L. var. altilis) callus cultures accumulate fatty acids and polyphenols and are therefore suitable for large-scale production of biochemicals and valuable compounds, as well as biofuel precursors. With the aim of boosting their potential uses, we designed a biotechnological approach to increase oleic acid content through Agrobacterium tumefaciens-mediated metabolic engineering. Bioinformatic data mining in the C. cardunculus transcriptome allowed the selection and molecular characterization of SAD (stearic acid desaturase) and FAD2.2 (fatty acid desaturase) genes, coding for key enzymes in oleic and linoleic acid formation, as targets for metabolic engineering. A total of 22 and 27 fast-growing independent CcSAD overexpressing (OE) and CcFAD2.2 RNAi knocked out (KO) transgenic lines were obtained. Further characterization of five independent transgenic lines for each construct demonstrated that, successfully, SAD overexpression increased linoleic acid content, e.g., to 42.5%, of the relative fatty acid content, in the CcSADOE6 line compared with 30.4% in the wild type (WT), whereas FAD2.2 silencing reduced linoleic acid in favor of the accumulation of its precursor, oleic acid, e.g., to almost 57% of the relative fatty acid content in the CcFAD2.2KO2 line with respect to 17.7% in the WT. Moreover, CcSADOE6 and CcFAD2.2KO2 were also characterized by a significant increase in total polyphenolic content up to about 4.7 and 4.1 mg/g DW as compared with 2.7 mg/g DW in the WT, mainly due to the accumulation of dicaffeoyl quinic and feruloyl quinic acids. These results pose the basis for the effective creation of an engineered cardoon cells-based biorefinery accumulating high levels of valuable compounds from primary and specialized metabolism to meet the industrial demand for renewable and sustainable sources of innovative bioproducts.

6.
Antioxidants (Basel) ; 11(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35739938

ABSTRACT

Cultivated cardoon (Cynara cardunculus L. var altilis) is a Mediterranean traditional food crop. It is adapted to xerothermic conditions and also grows in marginal lands, producing a large biomass rich in phenolic bioactive metabolites and has therefore received attention for pharmaceutical, cosmetic and innovative materials applications. Cardoon cell cultures can be used for the biotechnological production of valuable molecules in accordance with the principles of cellular agriculture. In the current study, we developed an elicitation strategy on leaf-derived cardoon calli for boosting the production of bioactive extracts for cosmetics. We tested elicitation conditions that trigger hyper-accumulation of bioactive phenolic metabolites without compromising calli growth through the application of chilling and salt stresses. We monitored changes in growth, polyphenol accumulation, and antioxidant capability, along with transcriptional variations of key chlorogenic acid and flavonoids biosynthetic genes. At moderate stress intensity and duration (14 days at 50-100 mM NaCl) salt exerted the best eliciting effect by stimulating total phenols and antioxidant power without impairing growth. Hydroalcoholic extracts from elicited cardoon calli with optimal growth and bioactive metabolite accumulation were demonstrated to lack cytotoxicity by MTT assay and were able to stimulate pro-collagen and aquaporin production in dermal cells. In conclusion, we propose a "natural" elicitation system that can be easily and safely employed to boost bioactive metabolite accumulation in cardoon cell cultures and also in pilot-scale cell culture production.

7.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769407

ABSTRACT

Cultivated cardoon (Cynara cardunculus var. altilis L.) is a promising candidate species for the development of plant cell cultures suitable for large-scale biomass production and recovery of nutraceuticals. We set up a protocol for Agrobacterium tumefaciens-mediated transformation, which can be used for the improvement of cardoon cell cultures in a frame of biorefinery. As high lignin content determines lower saccharification yields for the biomass, we opted for a biotechnological approach, with the purpose of reducing lignin content; we generated transgenic lines overexpressing the Arabidopsis thaliana MYB4 transcription factor, a known repressor of lignin/flavonoid biosynthesis. Here, we report a comprehensive characterization, including metabolic and transcriptomic analyses of AtMYB4 overexpression cardoon lines, in comparison to wild type, underlining favorable traits for their use in biorefinery. Among these, the improved accessibility of the lignocellulosic biomass to degrading enzymes due to depletion of lignin content, the unexpected increased growth rates, and the valuable nutraceutical profiles, in particular for hydroxycinnamic/caffeoylquinic and fatty acids profiles.


Subject(s)
Coumaric Acids/metabolism , Cynara/genetics , Cynara/metabolism , Lignin/metabolism , Plant Proteins/metabolism , Quinic Acid/analogs & derivatives , Arabidopsis/genetics , Arabidopsis/metabolism , Biofuels , Biomass , Cell Culture Techniques , Flavonoids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Quinic Acid/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcriptome
8.
Int J Mol Sci ; 22(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809189

ABSTRACT

Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.


Subject(s)
Biological Products/metabolism , Crops, Agricultural/metabolism , Disease Resistance/genetics , Secondary Metabolism/genetics , Crops, Agricultural/growth & development , Flavonoids/metabolism , Humans , Mediterranean Region , Metabolic Networks and Pathways/genetics , Phytochemicals/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Stress, Physiological/drug effects , Terpenes/metabolism
9.
Plants (Basel) ; 9(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333782

ABSTRACT

Extracellular Vesicles (EVs) play pivotal roles in cell-to-cell and inter-kingdom communication. Despite their relevant biological implications, the existence and role of plant EVs released into the environment has been unexplored. Herein, we purified round-shaped small vesicles (EVs) by differential ultracentrifugation of a sampling solution containing root exudates of hydroponically grown tomato plants. Biophysical analyses, by means of dynamic light scattering, microfluidic resistive pulse sensing and scanning electron microscopy, showed that the size of root-released EVs range in the nanometric scale (50-100 nm). Shot-gun proteomics of tomato EVs identified 179 unique proteins, several of which are known to be involved in plant-microbe interactions. In addition, the application of root-released EVs induced a significant inhibition of spore germination and of germination tube development of the plant pathogens Fusarium oxysporum, Botrytis cinerea and Alternaria alternata. Interestingly, these EVs contain several proteins involved in plant defense, suggesting that they could be new components of the plant innate immune system.

10.
Antioxidants (Basel) ; 9(11)2020 Nov 08.
Article in English | MEDLINE | ID: mdl-33171628

ABSTRACT

Cultivated cardoon (Cynara cardunculus var. altilis) has long been used as a food and medicine remedy and nowadays is considered a functional food. Its leaf bioactive compounds are mostly represented by chlorogenic acids and coumaroyl derivatives, known for their nutritional value and bioactivity. Having antioxidant and hepatoprotective properties, these molecules are used for medicinal purposes. Apart from the phenolic compounds in green tissues, cultivated cardoon is also used for the seed oil, having a composition suitable for the human diet, but also valuable as feedstock for the production of biofuel and biodegradable bioplastics. Given the wide spectrum of valuable cardoon molecules and their numerous industrial applications, a detailed characterization of different organs and tissues for their metabolic profiles as well as an extensive transcriptional analysis of associated key biosynthetic genes were performed to provide a deeper insight into metabolites biosynthesis and accumulation sites. This study aimed to provide a comprehensive analysis of the phenylpropanoids profile through UHPLC-Q-Orbitrap HRMS analysis, of fatty acids content through GC-MS analysis, along with quantitative transcriptional analyses by qRT-PCR of hydroxycinnamoyl-quinate transferase (HQT), stearic acid desaturase (SAD), and fatty acid desaturase (FAD) genes in seeds, hypocotyls, cotyledons and leaves of the cardoon genotypes "Spagnolo", "Bianco Avorio", and "Gigante". Both oil yield and total phenols accumulation in all the tissues and organs indicated higher production in "Bianco Avorio" and "Spagnolo" than in "Gigante". Antioxidant activity evaluation by DPPH, ABTS, and FRAP assays mirrored total phenols content. Overall, this study provides a detailed analysis of tissue composition of cardoon, enabling to elucidate value-added product accumulation and distribution during plant development and hence contributing to better address and optimize the sustainable use of this natural resource. Besides, our metabolic and transcriptional screening could be useful to guide the selection of superior genotypes.

11.
Plants (Basel) ; 9(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349234

ABSTRACT

Cultivated cardoon is a multipurpose crop with adaptability to limiting environments. Two genotypes ("Bianco Avorio" and "Spagnolo") were comparatively characterized in response to short and prolonged 100 mM NaCl stress in hydroponics. Salt induced no growth variations between genotypes or symptoms of NaCl toxicity, but boosted ABA accumulation in roots and leaves. Both genotypes had high constitutive phenol content, whose major components were depleted upon 2 days of stress only in "Bianco Avorio". Prolonged stress stimulated accumulation of proline, phenylpropanoids, and related transcripts, and non-enzymatic antioxidant activity. Decreased antioxidant enzymes activities upon short stress did not occur for APX in "Spagnolo", indicating a stronger impairment of enzymatic defenses in "Bianco Avorio". Nonetheless, H2O2 and lipid peroxidation did not increase under short and prolonged stress in both genotypes. Overall, the two genotypes appear to share similar defense mechanisms but, in the short term, "Bianco Avorio" depends mainly on non-enzymatic antioxidant phenylpropanoids for ROS scavenging, while "Spagnolo" maintains a larger arsenal of defenses. Upon prolonged stress, proline could have contributed to protection of metabolic functions in both genotypes. Our results provide cues that can be exploited for cardoon genetic improvement and highlight genotypic differences for breeding salinity tolerant varieties.

12.
Planta ; 251(1): 34, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31848729

ABSTRACT

MAIN CONCLUSION: Arundo donax ecotypes react differently to salinity, partly due to differences in constitutive defences and methylome plasticity. Arundo donax L. is a C3 fast-growing grass that yields high biomass under stress. To elucidate its ability to produce biomass under high salinity, we investigated short/long-term NaCl responses of three ecotypes through transcriptional, metabolic and DNA methylation profiling of leaves and roots. Prolonged salt treatment discriminated the sensitive ecotype 'Cercola' from the tolerant 'Domitiana' and 'Canneto' in terms of biomass. Transcriptional and metabolic responses to NaCl differed between the ecotypes. In roots, constitutive expression of ion transporter and stress-related transcription factors' genes was higher in 'Canneto' and 'Domitiana' than 'Cercola' and 21-day NaCl drove strong up-regulation in all ecotypes. In leaves, unstressed 'Domitiana' confirmed higher expression of the above genes, whose transcription was repressed in 'Domitiana' but induced in 'Cercola' following NaCl treatment. In all ecotypes, salinity increased proline, ABA and leaf antioxidants, paralleled by up-regulation of antioxidant genes in 'Canneto' and 'Cercola' but not in 'Domitiana', which tolerated a higher level of oxidative damage. Changes in DNA methylation patterns highlighted a marked capacity of the tolerant 'Domitiana' ecotype to adjust DNA methylation to salt stress. The reduced salt sensitivity of 'Domitiana' and, to a lesser extent, 'Canneto' appears to rely on a complex set of constitutively activated defences, possibly due to the environmental conditions of the site of origin, and on higher plasticity of the methylome. Our findings provide insights into the mechanisms of adaptability of A. donax ecotypes to salinity, offering new perspectives for the improvement of this species for cultivation in limiting environments.


Subject(s)
DNA Methylation , Ecotype , Poaceae/metabolism , Salt Tolerance/physiology , Sodium Chloride/metabolism , Antioxidants , Biomass , Genes, Plant/genetics , Lipid Peroxidation , Osmotic Pressure , Oxidative Stress , Plant Leaves/metabolism , Plant Roots/metabolism , Poaceae/genetics , Salinity , Salt Stress , Transcriptome
13.
Hortic Res ; 6: 5, 2019.
Article in English | MEDLINE | ID: mdl-30603091

ABSTRACT

Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots-beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma-interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum-induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant-Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs.

14.
DNA Res ; 25(2): 149-160, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29149280

ABSTRACT

Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC.


Subject(s)
Fruit/genetics , Genome, Plant , Polymorphism, Genetic , Solanum lycopersicum/genetics , Stress, Physiological/genetics , Whole Genome Sequencing , Base Sequence , Genes, Plant , Genomics
15.
J Plant Physiol ; 190: 79-94, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26705844

ABSTRACT

Trichoderma species include widespread rhizosphere-colonising fungi that may establish an opportunistic interaction with the plant, resulting in growth promotion and/or increased tolerance to biotic and abiotic stresses. For this reason, Trichoderma-based formulations are largely used in agriculture to improve yield while reducing the application of agro-chemicals. By using the Suppression Subtractive Hybridization method, we identified molecular mechanisms activated during the in vitro interaction between tomato (Solanum lycopersicum L.) and the selected strain MK1 of Trichoderma longibrachiatum, and which may participate in the stimulation of plant growth and systemic resistance. Screening and sequence analysis of the subtractive library resulted in forty unique transcripts. Their annotation in functional categories revealed enrichment in cell defence/stress and primary metabolism categories, while secondary metabolism and transport were less represented. Increased transcription of genes involved in defence, cell wall reinforcement and signalling of reactive oxygen species suggests that improved plant pathogen resistance induced by T. longibrachiatum MK1 in tomato may occur through stimulation of the above mechanisms. The array of activated defence-related genes indicates that different signalling pathways, beside the jasmonate/ethylene-dependent one, collaborate to fine-tune the plant response. Our results also suggest that the growth stimulation effect of MK1 on tomato may involve a set of genes controlling protein synthesis and turnover as well as energy metabolism and photosynthesis. Transcriptional profiling of several defence-related genes at different time points of the tomato-Trichoderma interaction, and after subsequent inoculation with the pathogen Botrytis cinerea, provided novel information on genes that may specifically modulate the tomato response to T. longibrachiatum, B. cinerea or both.


Subject(s)
Plant Diseases/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Trichoderma/physiology , Botrytis/physiology , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Molecular Sequence Data , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Probiotics , Sequence Analysis, DNA , Subtractive Hybridization Techniques
16.
Front Plant Sci ; 6: 1233, 2015.
Article in English | MEDLINE | ID: mdl-26858726

ABSTRACT

Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena) fruits. Chlorogenic acid (CGA) accounts for 70-90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena. Higher contents of CGA, Delphinidin 3-rutinoside, and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR, and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group six MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties. In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation. Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9) resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of the C-terminal region of SmMyb1 does not limit its capability to regulate CGA accumulation, but impairs anthocyanin biosynthesis. To our knowledge, this is the first study reporting a functional elucidation of the role of the C-term conserved domain in MYB activator proteins.

17.
BMC Med Genomics ; 7: 55, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25223409

ABSTRACT

BACKGROUND: Trisomy 1q and monosomy 3p deriving from a t(1;3) is an infrequent event. The clinical characteristics of trisomy 1q41-qter have been described but there is not a delineation of the syndrome. The 3p25.3-pter monosomy syndrome (MIM 613792) characteristics include low birth weight, microcephaly, psychomotor and growth retardation and abnormal facies. CASE PRESENTATION: A 2 years 8 months Mexican mestizo male patient was evaluated due to a trisomy 1q and monosomy 3p derived from a familial t(1;3)(q41;q26.3). Four female carriers of the balanced translocation and one relative that may have been similarly affected as the proband were identified. The implicated chromosomal regions were defined by microarray analysis, the patient had a trisomy 1q41-qter of 30.3 Mb in extension comprising about 240 protein coding genes and a monosomy 3p26.3-pter of 1.7 Mb including only the genes CNTN6 (MIM 607220) and CHL1 (MIM 607416), which have been implicated in dendrite development. Their contribution to the phenotype, regarding the definition of trisomy 1q41-qter and monosomy 3p26.3-pter syndromes are discussed. CONCLUSION: We propose that a trisomy 1q41-qter syndrome should be considered in particular when the following characteristics are present: postnatal growth delay, macrocephaly, wide fontanelle, triangular facies, frontal bossing, thick eye brows, down slanting palpebral fissures, hypertelorism, flat nasal bridge, hypoplasic nostrils, long filtrum, high palate, microretrognathia, ear abnormalities, neural abnormalities (in particular ventricular dilatation), psychomotor developmental delay and mental retardation. Our patient showed most of these clinical characteristics with exception of macrocephaly, possibly due to a compensatory effect by haploinsufficiency of the two genes lost from 3p. The identification of carriers has important implications for genetic counseling as the risk of a new born with either a der(3) or der(1) resulting from an adjacent-1 segregation is of 25% for each of them, as the products of adjacent-2 or 3:1 segregations are not expected to be viable.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 1/genetics , Pedigree , Translocation, Genetic , Trisomy/genetics , Child, Preschool , Chromosomes, Human, Pair 3 , Cytogenetic Analysis , Female , Humans , Male , Trisomy/pathology
18.
Cytogenet Genome Res ; 142(4): 249-54, 2014.
Article in English | MEDLINE | ID: mdl-24751616

ABSTRACT

Pure partial trisomy 2p patients have rarely been reported. Oligonucleotide array analysis has proved to be important for examining 2p rearrangements to delineate the involved segment and to rule out additional imbalances modifying the phenotype. Here, we report 2 siblings with an unbalanced translocation that led to a partial trisomy 2p (p22.3pter) and a terminal deletion of 12q (q24.33qter). This finding was characterized by the molecular karyotyping of both siblings. The 12q loss spanned approximately 300 kb and did not yield clinical features in our patients. The trisomic region in the short arm of chromosome 2 spanned 32.8 Mb and yielded phenotypic features of pure distal 2p trisomy, notably facial anomalies, growth failure, and psychomotor delay. The clinical features of our patients help to delineate the phenotype of the pure trisomy 2p syndrome. Patient 2 also showed a horseshoe kidney which is a previously unrecognized defect associated with this syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 12/genetics , Intellectual Disability/genetics , Monosomy/genetics , Trisomy/genetics , Child , Child, Preschool , Chromosomes, Human, Pair 2/genetics , Female , Humans , Infant , Karyotype , Male , Translocation, Genetic
19.
Perinatol. reprod. hum ; 26(2): 35-42, abr.-jun. 2012. ilus, tab
Article in Spanish | LILACS | ID: lil-695083

ABSTRACT

Se define como restricción del crecimiento intrauterino (RCIU) a la alteración en el crecimiento fetal que determina un peso por debajo de la percentila 10 para la edad gestacional. Las causas genéticas de RCIU pueden dividirse en: cromosómicas, alteraciones de la epigenética o impronta y síndromes génicos. Se presenta el caso de una paciente con RCIU referida por sospecha de displasia ósea, en la que se descartó disfunción vascular placentaria por ultrasonido prenatal, infecciones, patología materna y displasias óseas por estudio radiológico normal. Se realizó cariotipo en el cordón umbilical y en tres diferentes sitios de la placenta por la posibilidad de un mosaico placentario, obteniéndose un resultado normal. Al nacimiento presentó peso y talla por debajo de la percentila 3, cráneo dolicocéfalo con frontal prominente, fontanela anterior amplia, cara pequeña, triangular con mentón en punta y clinodactilia bilateral. A los dos meses de edad se observó asimetría de extremidades inferiores y se refirió reflujo gastroesofágico. Con base en los criterios clínicos y resultados obtenidos se realizó el diagnóstico de síndrome de Silver-Russell.


Intrauterine growth restriction (IUGR) is an alteration in fetal development in which the fetal weight is below the 10th percentile for gestational age. The genetic causes of IUGR can be classified as: chromosomal, epigenetic and other imprinting disorders and monogenic syndromes. We report a patient with IUGR referred to our hospital with the prenatal diagnosis of achondroplasia. Vascular malfunction of the placentae, maternal pathology, and skeletal dysplasia were discarded. A karyotype in umbilical cord and in three different placental spots was performed, with a normal result in all of them, ruling out placentae mosaicism. At birth, the weight and height were below the 3th percentile. Physical examination showed: dolicocephaly, frontal prominence, large fontanels, small and triangular face, pointed chin and incurved bilateral fifth fingers. Two months later a lower limb asymmetry was noticed and gastroesophageal reflux was referred. With these clinical abnormalities and the studies performed the diagnosis of Silver-Russell syndrome was established.

20.
Mol Plant Pathol ; 12(4): 341-54, 2011 May.
Article in English | MEDLINE | ID: mdl-21453429

ABSTRACT

Rhizosphere-competent fungi of the genus Trichoderma are widely used as biofertilizers and biopesticides in commercial formulates because of the multiple beneficial effects on plant growth and disease resistance. In this work, we demonstrate that genetic variability among wild and cultivated tomato lines affects the outcome of the interaction with two 'elite' biocontrol strains of T. atroviride and T. harzianum. The beneficial response, which included enhanced growth and systemic resistance against Botrytis cinerea, was clearly evident for some, but not all, the tested lines. At least in one case (line M82), treatment with the biocontrol agents had no effect or was even detrimental. Expression studies on defence-related genes suggested that the fungus is able to trigger, in the responsive lines, a long-lasting up-regulation of the salicylic acid pathway in the absence of a pathogen, possibly activating a priming mechanism in the plant. Consequently, infection with B. cinerea on plants pretreated with Trichoderma is followed by enhanced activation of jasmonate-responsive genes, eventually boosting systemic resistance to the pathogen in a plant genotype-dependent manner. Our data indicate that, at least in tomato, the Trichoderma induced systemic resistance mechanism is much more complex than considered so far, and the ability of the plant to benefit from this symbiotic-like interaction can be genetically improved.


Subject(s)
Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Trichoderma/physiology , Cyclopentanes/metabolism , Genotype , Immunity, Innate/genetics , Immunity, Innate/physiology , Solanum lycopersicum/classification , Solanum lycopersicum/genetics , Oxylipins/metabolism , Pest Control, Biological , Salicylic Acid/metabolism , Trichoderma/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...