Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Adv ; 8(34): eabm0397, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36026453

ABSTRACT

Deforestation and fragmentation are pervasive drivers of biodiversity loss, but how they scale up to entire landscapes remains poorly understood. Here, we apply species-habitat networks based on species co-occurrences to test the effects of insular fragmentation on multiple taxa-medium-large mammals, small nonvolant mammals, lizards, understory birds, frogs, dung beetles, orchid bees, and trees-across 22 forest islands and three continuous forest sites within a river-damming quasi-experimental landscape in Central Amazonia. Widespread, nonrandom local species extinctions were translated into highly nested networks of low connectance and modularity. Networks' robustness considering the sequential removal of large-to-small sites was generally low; between 5% (dung beetles) and 50% (orchid bees) of species persisted when retaining only <10 ha of islands. In turn, larger sites and body size were the main attributes structuring the networks. Our results raise the prospects that insular forest fragmentation results in simplified species-habitat networks, with distinct taxa persistence to habitat loss.

3.
Curr Biol ; 32(13): 2997-3004.e2, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35709755

ABSTRACT

As tropical forests are becoming increasingly fragmented, understanding the magnitude and time frame of biodiversity declines is vital for 21st century sustainability goals. Over three decades, we monitored post-isolation changes in small mammal species richness and abundance within a forest landscape fragmented by the construction of a dam in Thailand.1,2 We observed the near-complete collapse of species richness within 33 years, with no evidence of a recolonization effect across repeatedly sampled islands. Our results further revealed a decline in species richness as island size decreased and isolation time increased, accelerated by the increasing dominance of the ubiquitous Malayan field rat, Rattus tiomanicus. This species was already hyper-abundant on smaller islands in the initial surveys (1992-1994, 66% of individuals) but became monodominant on all islands, regardless of island size, by the most recent survey (2020, 97%). Our results suggest that insular forest fragments are highly susceptible to rapid species loss, particularly due to the competitive nature of Rattus accelerating the rate at which extinction debts are paid. To mitigate these impacts, reducing the extent of habitat degradation, as triggered by fragmentation and exacerbated by isolation time, can help to sustain native biodiversity while averting Rattus hyper-abundance.


Subject(s)
Conservation of Natural Resources , Forests , Animals , Biodiversity , Ecosystem , Mammals , Rats
4.
Sci Rep ; 12(1): 1797, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110574

ABSTRACT

Tropical forests are being heavily modified by varying intensities of land use ranging from structural degradation to complete conversion. While ecological responses of vertebrate assemblages to habitat modification are variable, such understanding is critical to appropriate conservation planning of anthropogenic landscapes. We assessed the responses of medium/large-bodied mammal assemblages to the ecological impacts of reduced impact logging, secondary regrowth, and eucalyptus and oil palm plantations in Eastern Brazilian Amazonia. We used within-landscape paired baseline-treatment comparisons to examine the impact of different types of habitat modification in relation to adjacent primary forest. We examined assemblage-wide metrics including the total number of species, number of primary forest species retained in modified habitats, abundance, species composition, and community integrity. We ranked all types of habitat modification along a gradient of assemblage-wide impact intensity, with oil palm and eucalyptus plantations exerting the greatest impact, followed by secondary regrowth, and selectively logging. Selectively-logged and secondary forests did not experience discernible biodiversity loss, except for the total number of primary forest species retained. Secondary forests further experienced pronounced species turnover, with loss of community integrity. Considering the biodiversity retention capacity of anthropogenic habitats, this study reinforces the landscape-scale importance of setting aside large preserved areas.


Subject(s)
Adaptation, Physiological , Arecaceae/growth & development , Conservation of Natural Resources , Ecosystem , Eucalyptus/growth & development , Forestry , Rainforest , Trees/growth & development , Biodiversity , Environmental Monitoring , Tropical Climate
5.
Commun Biol ; 4(1): 1358, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34887507

ABSTRACT

The rapid expansion of hydropower across tropical landscapes has caused extensive habitat loss and degradation, triggering biodiversity loss. Despite known risks to freshwater biodiversity, the flooding of terrestrial habitats caused by dam construction, and associated impacts on terrestrial biota, have been rarely considered. To help fill this knowledge gap, we quantified the habitat loss following inundation of hydropower reservoirs across the range of two iconic species, jaguars and tigers. To do so, we compiled existing and planned dams intersecting the distribution of these apex predators. We found 164 dams intersecting the jaguar range, in total flooding 25,397 km2. For tigers, we identified 421 dams, amounting to 13,750 km2. As hydropower infrastructure is projected to expand in the decades ahead, these values are expected to increase greatly, particularly within the distribution of jaguars where the number of dams will nearly quadruple (429 planned dams). Despite the relatively few dams (41) planned across the range of tigers, most will intersect priority conservation areas for this species. We recommend a more cautious pursuit of hydropower in topographically flat regions, to avoid extensive habitat flooding which has occurred in the Neotropics, and avoiding dam construction in priority conservation landscapes for tigers.


Subject(s)
Conservation of Natural Resources , Ecosystem , Electric Power Supplies/adverse effects , Panthera , Tigers , Animals , Asia, Southeastern , Central America , India , South America
6.
PLoS One ; 15(3): e0230209, 2020.
Article in English | MEDLINE | ID: mdl-32160257

ABSTRACT

Agricultural frontier expansion into the Amazon over the last four decades has created million hectares of fragmented forests. While many species undergo local extinctions within remaining forest patches, this may be compensated by native species from neighbouring open-habitat areas potentially invading these patches, particularly as forest habitats become increasingly degraded. Here, we examine the effects of habitat loss, fragmentation and degradation on small mammal assemblages in a southern Amazonian deforestation frontier, while accounting for species-specific degree of forest-dependency. We surveyed small mammals at three continuous forest sites and 19 forest patches of different sizes and degrees of isolation. We further sampled matrix habitats adjacent to forest patches, which allowed us to classify each species according to forest-dependency and generate a community-averaged forest-dependency index for each site. Based on 21,568 trap-nights, we recorded 970 small mammals representing 20 species: 12 forest-dependents, 5 matrix-tolerants and 3 open-habitat specialists. Across the gradient of forest patch size, small mammal assemblages failed to show the typical species-area relationship, but this relationship held true when either species abundance or composition was considered. Species composition was further mediated by community-averaged forest-dependency, so that smaller forest patches were occupied by a lower proportion of forest-dependent rodents and marsupials. Both species richness and abundance increased in less isolated fragments surrounded by structurally simplified matrix habitats (e.g. active or abandoned cattle pastures). While shorter distances between forest patches may favour small mammal abundances, forest area and matrix complexity dictated which species could persist within forest fragments according to their degree of forest-dependency. Small mammal local extinctions in small forest patches within Amazonian deforestation frontiers are therefore likely offset by the incursion of open-habitat species. To preclude the dominance of those species, and consequent losses of native species and associated ecosystem functions, management actions should limit or reduce areas dedicated to pasture, additionally maintaining more structurally complex matrix habitats across fragmented landscapes.


Subject(s)
Biodiversity , Conservation of Natural Resources/trends , Mammals , Animals , Brazil , Ecosystem , Endangered Species/trends , Forests , Population Dynamics , Rainforest , Rivers , Species Specificity , Trees
7.
Oecologia ; 187(1): 191-204, 2018 05.
Article in English | MEDLINE | ID: mdl-29556713

ABSTRACT

Hydroelectric dams have induced widespread loss, fragmentation and degradation of terrestrial habitats in lowland tropical forests. Yet their ecological impacts have been widely neglected, particularly in developing countries, which are currently earmarked for exponential hydropower development. Here we assess small mammal assemblage responses to Amazonian forest habitat insularization induced by the 28-year-old Balbina Hydroelectric Dam. We sampled small mammals on 25 forest islands (0.83-1466 ha) and four continuous forest sites in the mainland to assess the overall community structure and species-specific responses to forest insularization. We classified all species according to their degree of forest-dependency using a multi-scale approach, considering landscape, patch and local habitat characteristics. Based on 65,520 trap-nights, we recorded 884 individuals of at least 22 small mammal species. Species richness was best predicted by island area and isolation, with small islands (< 15 ha) harbouring an impoverished nested subset of species (mean ± SD: 2.6 ± 1.3 species), whereas large islands (> 200 ha; 10.8 ± 1.3 species) and continuous forest sites (∞ ha; 12.5 ± 2.5 species) exhibited similarly high species richness. Forest-dependent species showed higher local extinction rates and were often either absent or persisted at low abundances on small islands, where non-forest-dependent species became hyper-abundant. Species capacity to use non-forest habitat matrices appears to dictate small mammal success in small isolated islands. We suggest that ecosystem functioning may be highly disrupted on small islands, which account for 62.7% of all 3546 islands in the Balbina Reservoir.


Subject(s)
Ecosystem , Forests , Adult , Animals , Biodiversity , Islands , Mammals , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...