Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8347, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594297

ABSTRACT

Phosphatized fish fossils occur in various locations worldwide. Although these fossils have been intensively studied over the past decades they remain a matter of ongoing research. The mechanism of the permineralization reaction itself remains still debated in the community. The mineralization in apatite of a whole fish requires a substantial amount of phosphate which is scarce in seawater, so the origin of the excess is unknown. Previous research has shown that alkaline phosphatase, a ubiquitous enzyme, can increase the phosphate content in vitro in a medium to the degree of saturation concerning apatite. We applied this principle to an experimental setup where fish scales were exposed to commercial bovine alkaline phosphatase. We analyzed the samples with SEM and TEM and found that apatite crystals had formed on the remaining soft tissue. A comparison of these newly formed apatite crystals with fish fossils from the Solnhofen and Santana fossil deposits showed striking similarities. Both are made up of almost identically sized and shaped nano-apatites. This suggests a common formation process: the spontaneous precipitation from an oversaturated solution. The excess activity of alkaline phosphatase could explain that effect. Therefore, our findings could provide insight into the formation of well-preserved fossils.


Subject(s)
Alkaline Phosphatase , Apatites , Animals , Cattle , Apatites/chemistry , Phosphates/metabolism , Fossils
2.
Sci Rep ; 14(1): 6728, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509138

ABSTRACT

Biofilms are important in the natural process of plant tissue degradation. However, fundamental knowledge of biofilm community structure and succession on decaying leaves under different oxygen conditions is limited. Here, we used 16S rRNA and ITS gene amplicon sequencing to investigate the composition, temporal dynamics, and community assembly processes of bacterial and fungal biofilms on decaying leaves in vitro. Leaves harvested from three plant species were immersed in lake water under aerobic and anaerobic conditions in vitro for three weeks. Biofilm-covered leaf samples were collected weekly and investigated by scanning electron microscopy. The results showed that community composition differed significantly between biofilm samples under aerobic and anaerobic conditions, though not among plant species. Over three weeks, a clear compositional shift of the bacterial and fungal biofilm communities was observed. The alpha diversity of prokaryotes increased over time in aerobic assays and decreased under anaerobic conditions. Oxygen availability and incubation time were found to be primary factors influencing the microbial diversity of biofilms on different decaying plant species in vitro. Null models suggest that stochastic processes governed the assembly of biofilm communities of decaying leaves in vitro in the early stages of biofilm formation and were further shaped by niche-associated factors.


Subject(s)
Bacteria , Biofilms , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Prokaryotic Cells , Plant Leaves
3.
Front Microbiol ; 14: 1123790, 2023.
Article in English | MEDLINE | ID: mdl-37007522

ABSTRACT

Introduction: Surface soil microbial communities are directly exposed to the heat from wildland fires. Due to this, the microbial community composition may be stratified within the soil profile with more heat tolerant microbes near the surface and less heat tolerant microbes, or mobile species found deeper in the soil. Biological soil crusts, biocrusts, are found on the soil surface and contain a diverse microbial community that is directly exposed to the heat from wildland fires. Methods: Here, we used a simulated fire mesocosm along with a culture-based approach and molecular characterization of microbial isolates to understand the stratification of biocrust and bare soil microbes after low severity (450°C) and high severity (600°C) fires. We cultured and sequenced microbial isolates from 2 to 6 cm depth from both fire types. Results: The isolates were stratified along the soil depth. Green algal isolates were less thermotolerant and found in the deeper depths (4-6 cm) and the control soils, while several cyanobacteria in Oscillatoriales, Synechococcales, and Nostocales were found at 2-3 cm depth for both fire temperatures. An Alphaproteobacteria isolate was common across several depths, both fire types, and both fire temperatures. Furthermore, we used RNA sequencing at three depths after the high severity fire and one control to determine what microbial community is active following a fire. The community was dominated by Gammaproteobacteria, however some Cyanobacteria ASVs were also present. Discussion: Here we show evidence of stratification of soil and biocrust microbes after a fire and provide evidence that these microbes are able to survive the heat from the fire by living just below the soil surface. This is a steppingstone for future work on the mechanisms of microbial survival after fire and the role of soil insulation in creating resilient communities.

4.
Microb Ecol ; 85(3): 1028-1044, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36346444

ABSTRACT

Microbial communities are integral for ecosystem processes and their taxonomic composition and function may be altered by a disturbance such as fire. Biocrusts are composed of macroscopic and microscopic organisms and are important for a variety of ecosystem functions, such as nutrient cycling and erosion control. We sought to understand if biocrust community composition and function were altered 1 year after a prescribed fire and 6 years after a wildfire in a coastal California grassland on San Clemente Island. We used shotgun metagenomic sequencing and measurements of chlorophyll content, exopolysaccharide production related to soil stability, and nitrogen fixation. There were no differences in the community composition between unburned samples and the samples burned in the prescribed fire and wildfire. Chlorophyll content differed between the prescribed fire and the controls; however, there were no measured differences in exopolysaccharide production, and nitrogen fixation. However, the wildfire and their respective unburned samples had different functions based on the gene annotations. We compiled one Actinobacteria metagenome-assembled genome from the shotgun sequences which had genes for oxidative and heat stress tolerance. These results suggest that the biocrust community can reach a community composition and function similar to the unburned biocrusts within a year after a prescribed burn and 6 years after a wildfire. However, legacy effects of the wildfire may present themselves in the differences between functional gene sequences. Due to their ability to match the undisturbed community composition and function within years and without intervention, future restoration work should consider the biocrusts in their restoration plans as they may provide valuable ecosystem functions after a disturbance.


Subject(s)
Fires , Microbiota , Ecosystem , Grassland , Bacteria/genetics , Chlorophyll , Soil
SELECTION OF CITATIONS
SEARCH DETAIL