Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Clin Cancer Res ; 30(18): 4082-4099, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39018564

ABSTRACT

PURPOSE: Pseudomyxoma peritonei (PMP) is a rare and poorly understood malignant condition characterized by the accumulation of intra-abdominal mucin produced from peritoneal metastases. Currently, cytoreductive surgery remains the mainstay of treatment but disease recurrence and death after relapse frequently occur in patients with PMP. New therapeutic strategies are therefore urgently needed for these patients. EXPERIMENTAL DESIGN: A total of 120 PMP samples from 50 patients were processed to generate a collection of 50 patient-derived organoid (PDO) and xenograft (PDX) models. Whole exome sequencing, immunohistochemistry analyses, and in vitro and in vivo drug efficacy studies were performed. RESULTS: In this study, we have generated a collection of PMP preclinical models and identified druggable targets, including BRAFV600E, KRASG12C, and KRASG12D, that could also be detected in intra-abdominal mucin biopsies of patients with PMP using droplet digital PCR. Preclinical models preserved the histopathological markers from the original patient sample. The BRAFV600E inhibitor encorafenib reduced cell viability of BRAFV600E PMP-PDO models. Proof-of-concept in vivo experiments showed that a systemic treatment with encorafenib significantly reduced tumor growth and prolonged survival in subcutaneous and orthotopic BRAFV600E-PMP-PDX mouse models. CONCLUSIONS: Our study demonstrates for the first time that systemic targeted therapies can effectively control PMP tumors. BRAF signaling pathway inhibition represents a new therapeutic opportunity for patients with BRAFV600E PMP who have a poor prognosis. Importantly, our present data and collection of preclinical models pave the way for evaluating the efficacy of other systemic targeted therapies toward extending the promise of precision oncology to patients with PMP.


Subject(s)
Molecular Targeted Therapy , Peritoneal Neoplasms , Precision Medicine , Pseudomyxoma Peritonei , Xenograft Model Antitumor Assays , Pseudomyxoma Peritonei/pathology , Pseudomyxoma Peritonei/drug therapy , Pseudomyxoma Peritonei/genetics , Humans , Animals , Mice , Precision Medicine/methods , Molecular Targeted Therapy/methods , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Female , Male , Proto-Oncogene Proteins p21(ras)/genetics , Exome Sequencing , Mutation , Cell Line, Tumor , Organoids/drug effects , Organoids/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
2.
Cell Rep ; 42(8): 112927, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37537841

ABSTRACT

Tumor relapse is linked to rapid chemoresistance and represents a bottleneck for cancer therapy success. Engagement of a reduced proliferation state is a non-mutational mechanism exploited by cancer cells to bypass therapy-induced cell death. Through combining functional pulse-chase experiments in engineered cells and transcriptomic analyses, we identify DPPA3 as a master regulator of slow-cycling and chemoresistant phenotype in colorectal cancer (CRC). We find a vicious DPPA3-HIF1α feedback loop that downregulates FOXM1 expression via DNA methylation, thereby delaying cell-cycle progression. Moreover, downregulation of HIF1α partially restores a chemosensitive proliferative phenotype in DPPA3-overexpressing cancer cells. In cohorts of CRC patient samples, DPPA3 overexpression acts as a predictive biomarker of chemotherapeutic resistance that subsequently requires reduction in its expression to allow metastatic outgrowth. Our work demonstrates that slow-cycling cancer cells exploit a DPPA3/HIF1α axis to support tumor persistence under therapeutic stress and provides insights on the molecular regulation of disease progression.

3.
Methods Mol Biol ; 2650: 227-233, 2023.
Article in English | MEDLINE | ID: mdl-37310635

ABSTRACT

The intestinal epithelium is a rapid self-renewing tissue. Stem cells at the bottom of the crypts first give rise to a proliferative progeny that finally differentiates to a variety of cell types. These terminally differentiated intestinal cells are mostly present in the villi of the intestinal wall and serve as functional units to sustain the main purpose of the organ: food absorption. But for a balance homeostasis, the intestine is composed not only by absorptive enterocytes but also by other cell types such as goblet cells that secrete mucus to lubricate the intestinal lumen, Paneth cells that secrete antimicrobial peptides to control microbiome, and others. Many relevant conditions affecting the intestine including chronic inflammation, Crohn's disease, or cancer can alter the composition of these different functional cell types. As a consequence, they can lose their specialized activity as functional units and further contribute to disease progression and malignancy. Measuring the amount of these different cell populations in the intestine is essential to understand the bases of these diseases and their specific contribution to their malignancy. Interestingly, patient-derived xenograft (PDX) models faithfully recapitulate patients' tumors including the proportion of the different cell lineages present in the original tumor. Here we expose some protocols for evaluating the differentiation of intestinal cells in colorectal tumors.


Subject(s)
Colorectal Neoplasms , Intestinal Mucosa , Humans , Animals , Cell Differentiation , Cell Lineage , Antimicrobial Peptides , Disease Models, Animal
4.
J Vis Exp ; (192)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36847362

ABSTRACT

Over the last decade, more sophisticated preclinical colorectal cancer (CRC) models have been established using patient-derived cancer cells and 3D tumoroids. Since patient derived tumor organoids can retain the characteristics of the original tumor, these reliable preclinical models enable cancer drug screening and the study of drug resistance mechanisms. However, CRC related death in patients is mostly associated with the presence of metastatic disease. It is therefore essential to evaluate the efficacy of anti-cancer therapies in relevant in vivo models that truly recapitulate the key molecular features of human cancer metastasis. We have established an orthotopic model based on the injection of CRC patient-derived cancer cells directly into the cecum wall of mice. These tumor cells develop primary tumors in the cecum that metastasize to the liver and lungs, which is frequently observed in patients with advanced CRC. This CRC mouse model can be used to evaluate drug responses monitored by microcomputed tomography (µCT), a clinically relevant small-scale imaging method that can easily identify primary tumors or metastases in patients. Here, we describe the surgical procedure and the required methodology to implant patient-derived cancer cells in the cecum wall of immunodeficient mice.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Mice , Animals , X-Ray Microtomography , Colorectal Neoplasms/pathology , Cecum/pathology , Embryo Implantation , Disease Models, Animal
5.
Cell Rep ; 41(3): 111430, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261015

ABSTRACT

Despite the revolution of immunotherapy in cancer treatment, patients eventually progress due to the emergence of resistance. In this scenario, the selection of the tumor antigen can be decisive in the success of the clinical response. T cell bispecific antibodies (TCBs) are engineered molecules that include binding sites to the T cell receptor and to a tumor antigen. Using gastric CEA+/HER2+ MKN45 cells and TCBs directed against CEA or HER2, we show that the mechanism of resistance to a TCB is dependent on the tumor antigen. Acquired resistant models to a high-affinity-CEA-targeted TCB exhibit a reduction of CEA levels due to transcriptional silencing, which is reversible upon 5-AZA treatment. In contrast, a HER2-TCB resistant model maintains HER2 levels and exhibit a disruption of the interferon-gamma signaling. These results will help in the design of combinatorial strategies to increase the efficacy of cancer immunotherapies and to anticipate and overcome resistances.


Subject(s)
Antibodies, Bispecific , Humans , Antibodies, Bispecific/therapeutic use , Carcinoembryonic Antigen , Interferon-gamma/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes , Cell Line, Tumor
6.
Methods Mol Biol ; 2535: 85-92, 2022.
Article in English | MEDLINE | ID: mdl-35867224

ABSTRACT

Dormant or slow-cycling tumor cells can form a residual chemoresistant reservoir responsible for relapse in patients, years after curative surgery and adjuvant therapy. Slow-cycling cancer cells (SCCC) represent a cellular status rather than a cell population present in a minor proportion, even in growing tumors. We have adapted the pulse-chase expression of histone H2B fused to enhanced GFP (H2BeGFP) for labelling and isolating SCCC. SCCC show cancer-initiation potential and enhanced chemoresistance, and present a distinctive nongenetic and cell-autonomous gene expression profile shared across different tumor types. The use of our H2BeGFP pulse-chase method opens the possibility to study live SCCC in any growing tissue either cancerous or normal.


Subject(s)
Histones , Neoplasms , Green Fluorescent Proteins/metabolism , Histones/genetics , Humans , Neoplasms/genetics
7.
Nat Cancer ; 3(4): 418-436, 2022 04.
Article in English | MEDLINE | ID: mdl-35469014

ABSTRACT

Patient-derived organoids (PDOs) recapitulate tumor architecture, contain cancer stem cells and have predictive value supporting personalized medicine. Here we describe a large-scale functional screen of dual-targeting bispecific antibodies (bAbs) on a heterogeneous colorectal cancer PDO biobank and paired healthy colonic mucosa samples. More than 500 therapeutic bAbs generated against Wingless-related integration site (WNT) and receptor tyrosine kinase (RTK) targets were functionally evaluated by high-content imaging to capture the complexity of PDO responses. Our drug discovery strategy resulted in the generation of MCLA-158, a bAb that specifically triggers epidermal growth factor receptor degradation in leucine-rich repeat-containing G-protein-coupled receptor 5-positive (LGR5+) cancer stem cells but shows minimal toxicity toward healthy LGR5+ colon stem cells. MCLA-158 exhibits therapeutic properties such as growth inhibition of KRAS-mutant colorectal cancers, blockade of metastasis initiation and suppression of tumor outgrowth in preclinical models for several epithelial cancer types.


Subject(s)
Antibodies, Bispecific , Neoplasms, Glandular and Epithelial , Antibodies, Bispecific/pharmacology , ErbB Receptors/metabolism , Humans , Imidazoles , Neoplasms, Glandular and Epithelial/metabolism , Neoplastic Stem Cells/metabolism , Organoids , Pyrazines , Receptors, G-Protein-Coupled/metabolism
8.
Cancer Res ; 81(2): 464-475, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33203702

ABSTRACT

Aberrant Wnt signaling drives a number of cancers through regulation of diverse downstream pathways. Wnt/ß-catenin signaling achieves this in part by increasing the expression of proto-oncogenes such as MYC and cyclins. However, global assessment of the Wnt-regulated transcriptome in vivo in genetically distinct cancers demonstrates that Wnt signaling suppresses the expression of as many genes as it activates. In this study, we examined the set of genes that are upregulated upon inhibition of Wnt signaling in Wnt-addicted pancreatic and colorectal cancer models. Decreasing Wnt signaling led to a marked increase in gene expression by activating ERK and JNK; these changes in gene expression could be mitigated in part by concurrent inhibition of MEK. These findings demonstrate that increased Wnt signaling in cancer represses MAPK activity, preventing RAS-mediated senescence while allowing cancer cells to proliferate. These results shift the paradigm from Wnt/ß-catenin primarily as an activator of transcription to a more nuanced view where Wnt/ß-catenin signaling drives both widespread gene repression and activation. SIGNIFICANCE: These findings show that Wnt/ß-catenin signaling causes widespread gene repression via inhibition of MAPK signaling, thus fine tuning the RAS-MAPK pathway to optimize proliferation in cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/pathology , Gene Expression Regulation, Neoplastic , Mitogen-Activated Protein Kinases/metabolism , Pancreatic Neoplasms/pathology , Wnt1 Protein/metabolism , beta Catenin/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mitogen-Activated Protein Kinases/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pyridones/pharmacology , Pyrimidinones/pharmacology , Tumor Cells, Cultured , Wnt1 Protein/genetics , Xenograft Model Antitumor Assays , beta Catenin/genetics
9.
Proc Natl Acad Sci U S A ; 117(28): 16292-16301, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601208

ABSTRACT

Notch pathway signaling is implicated in several human cancers. Aberrant activation and mutations of Notch signaling components are linked to tumor initiation, maintenance, and resistance to cancer therapy. Several strategies, such as monoclonal antibodies against Notch ligands and receptors, as well as small-molecule γ-secretase inhibitors (GSIs), have been developed to interfere with Notch receptor activation at proximal points in the pathway. However, the use of drug-like small molecules to target the downstream mediators of Notch signaling, the Notch transcription activation complex, remains largely unexplored. Here, we report the discovery of an orally active small-molecule inhibitor (termed CB-103) of the Notch transcription activation complex. We show that CB-103 inhibits Notch signaling in primary human T cell acute lymphoblastic leukemia and other Notch-dependent human tumor cell lines, and concomitantly induces cell cycle arrest and apoptosis, thereby impairing proliferation, including in GSI-resistant human tumor cell lines with chromosomal translocations and rearrangements in Notch genes. CB-103 produces Notch loss-of-function phenotypes in flies and mice and inhibits the growth of human breast cancer and leukemia xenografts, notably without causing the dose-limiting intestinal toxicity associated with other Notch inhibitors. Thus, we describe a pharmacological strategy that interferes with Notch signaling by disrupting the Notch transcription complex and shows therapeutic potential for treating Notch-driven cancers.


Subject(s)
Receptors, Notch/metabolism , Small Molecule Libraries/pharmacology , Transcriptional Activation/drug effects , Animals , Apoptosis/drug effects , Binding Sites , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drosophila , Drug Resistance, Neoplasm/drug effects , HeLa Cells , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/chemistry , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Mice , Mutation , Phenotype , Protein Multimerization , Signal Transduction/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use
10.
Methods Mol Biol ; 2171: 321-329, 2020.
Article in English | MEDLINE | ID: mdl-32705653

ABSTRACT

In the recent years has being a great expansion of new preclinical models of colorectal cancer (CRC) based on patient-derived cells, from ex vivo 2D cell lines, toward 3D tumoroids or animal xenografts. These new technologies have been key to overcome historical limitations in CRC research such as precision medicine, pharmacogenomic screenings, or investigating mechanism of drug resistance. Here we describe a method to generate metastatic CRC in mice with patient-derived cells and the evaluation of drug response with computerized tomography. CRC at this advanced stage is the most frequent situation in patients enrolled in therapies with novel drugs that in some cases are designed to target metastatic cells. Therefore, these orthotopic models could be considered the best to recapitulate advance CRC and are therefore becoming instrumental to investigate the biology behind drug-response in metastatic disease.


Subject(s)
Colorectal Neoplasms/pathology , Stem Cell Research , Animals , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Disease Models, Animal , Humans , Mice , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL