Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Med Chem ; 63(21): 12957-12977, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33118821

ABSTRACT

Inhibition of glutaminase-1 (GLS-1) hampers the proliferation of tumor cells reliant on glutamine. Known glutaminase inhibitors have potential limitations, and in vivo exposures are potentially limited due to poor physicochemical properties. We initiated a GLS-1 inhibitor discovery program focused on optimizing physicochemical and pharmacokinetic properties, and have developed a new selective inhibitor, compound 27 (IPN60090), which is currently in phase 1 clinical trials. Compound 27 attains high oral exposures in preclinical species, with strong in vivo target engagement, and should robustly inhibit glutaminase in humans.


Subject(s)
Enzyme Inhibitors/chemistry , Glutaminase/antagonists & inhibitors , Triazoles/pharmacokinetics , Administration, Oral , Animals , Cell Line, Tumor , Dogs , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Glutaminase/genetics , Glutaminase/metabolism , Half-Life , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Male , Mice , Microsomes/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/metabolism
2.
Cell Rep ; 26(2): 469-482.e5, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30625329

ABSTRACT

The plasticity of a preexisting regulatory circuit compromises the effectiveness of targeted therapies, and leveraging genetic vulnerabilities in cancer cells may overcome such adaptations. Hereditary leiomyomatosis renal cell carcinoma (HLRCC) is characterized by oxidative phosphorylation (OXPHOS) deficiency caused by fumarate hydratase (FH) nullizyogosity. To identify metabolic genes that are synthetically lethal with OXPHOS deficiency, we conducted a genetic loss-of-function screen and found that phosphogluconate dehydrogenase (PGD) inhibition robustly blocks the proliferation of FH mutant cancer cells both in vitro and in vivo. Mechanistically, PGD inhibition blocks glycolysis, suppresses reductive carboxylation of glutamine, and increases the NADP+/NADPH ratio to disrupt redox homeostasis. Furthermore, in the OXPHOS-proficient context, blocking OXPHOS using the small-molecule inhibitor IACS-010759 enhances sensitivity to PGD inhibition in vitro and in vivo. Together, our study reveals a dependency on PGD in OXPHOS-deficient tumors that might inform therapeutic intervention in specific patient populations.


Subject(s)
Oxidative Phosphorylation , Phosphogluconate Dehydrogenase/genetics , Synthetic Lethal Mutations , Animals , Cell Line, Tumor , Female , Fumarate Hydratase/genetics , Genomics/methods , Glycolysis , Humans , Loss of Function Mutation , Mice , Mice, Nude
3.
Drug Discov Today Technol ; 19: 65-71, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27769360

ABSTRACT

The entry of small molecule inhibitors of the bromodomain and extra C-terminal domain (BET) family of bromodomains into the clinic has demonstrated the therapeutic potential for this class of epigenetic acetyl-lysine reader proteins. Within the past two years, the development of potent inhibitors for the bromodomain and PHD finger containing protein (BRPF) family and the tripartite motif containing protein 24 (TRIM24) have been reported and are the subject of this review. Both proteins contain other domains with diverse functions and can also be part of a complex of proteins which have implications in epigenetic signaling and disease. These new small molecule tools will be useful for unraveling the biological contribution of the bromodomain and enable pharmacological validation of these proteins.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Carrier Proteins/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Protein Domains , Adaptor Proteins, Signal Transducing/chemistry , Animals , Carrier Proteins/chemistry , DNA-Binding Proteins , Humans , Nuclear Proteins/chemistry
4.
J Med Chem ; 59(4): 1440-54, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26061247

ABSTRACT

The bromodomain containing proteins TRIM24 (tripartite motif containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are involved in the epigenetic regulation of gene expression and have been implicated in human cancer. Overexpression of TRIM24 correlates with poor patient prognosis, and BRPF1 is a scaffolding protein required for the assembly of histone acetyltransferase complexes, where the gene of MOZ (monocytic leukemia zinc finger protein) was first identified as a recurrent fusion partner in leukemia patients (8p11 chromosomal rearrangements). Here, we present the structure guided development of a series of N,N-dimethylbenzimidazolone bromodomain inhibitors through the iterative use of X-ray cocrystal structures. A unique binding mode enabled the design of a potent and selective inhibitor 8i (IACS-9571) with low nanomolar affinities for TRIM24 and BRPF1 (ITC Kd = 31 nM and ITC Kd = 14 nM, respectively). With its excellent cellular potency (EC50 = 50 nM) and favorable pharmacokinetic properties (F = 29%), 8i is a high-quality chemical probe for the evaluation of TRIM24 and/or BRPF1 bromodomain function in vitro and in vivo.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Drug Design , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Animals , Benzimidazoles/pharmacokinetics , Carrier Proteins/chemistry , DNA-Binding Proteins , Female , Humans , Methylation , Mice , Molecular Docking Simulation , Nuclear Proteins/chemistry , Protein Binding
5.
Article in English | MEDLINE | ID: mdl-26396593

ABSTRACT

BACKGROUND: Proteins that 'read' the histone code are central elements in epigenetic control and bromodomains, which bind acetyl-lysine motifs, are increasingly recognized as potential mediators of disease states. Notably, the first BET bromodomain-based therapies have entered clinical trials and there is a broad interest in dissecting the therapeutic relevance of other bromodomain-containing proteins in human disease. Typically, drug development is facilitated and expedited by high-throughput screening, where assays need to be sensitive, robust, cost-effective and scalable. However, for bromodomains, which lack catalytic activity that otherwise can be monitored (using classical enzymology), the development of cell-based, drug-target engagement assays has been challenging. Consequently, cell biochemical assays have lagged behind compared to other protein families (e.g., histone deacetylases and methyltransferases). RESULTS: Here, we present a suite of novel chromatin and histone-binding assays using AlphaLISA, in situ cell extraction and fluorescence-based, high-content imaging. First, using TRIM24 as an example, the homogenous, bead-based AlphaScreen technology was modified from a biochemical peptide-competition assay to measure binding of the TRIM24 bromodomain to endogenous histone H3 in cells (AlphaLISA). Second, a target agnostic, high-throughput imaging platform was developed to quantify the ability of chemical probes to dissociate endogenous proteins from chromatin/nuclear structures. While overall nuclear morphology is maintained, the procedure extracts soluble, non-chromatin-bound proteins from cells with drug-target displacement visualized by immunofluorescence (IF) or microscopy of fluorescent proteins. Pharmacological evaluation of these assays cross-validated their utility, sensitivity and robustness. Finally, using genetic and pharmacological approaches, we dissect domain contribution of TRIM24, BRD4, ATAD2 and SMARCA2 to chromatin binding illustrating the versatility/utility of the in situ cell extraction platform. CONCLUSIONS: In summary, we have developed two novel complementary and cell-based drug-target engagement assays, expanding the repertoire of pharmacodynamic assays for bromodomain tool compound development. These assays have been validated through a successful TRIM24 bromodomain inhibitor program, where a micromolar lead molecule (IACS-6558) was optimized using cell-based assays to yield the first single-digit nanomolar TRIM24 inhibitor (IACS-9571). Altogether, the assay platforms described herein are poised to accelerate the discovery and development of novel chemical probes to deliver on the promise of epigenetic-based therapies.

6.
Cancer Res ; 75(18): 3865-3878, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26139243

ABSTRACT

The SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g., lung, synovial sarcoma, leukemia, and rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacologic efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation, and target gene expression studies. Furthermore, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacologic studies exemplify a general strategy for multidomain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy.


Subject(s)
Azabicyclo Compounds/pharmacology , Chromatin Assembly and Disassembly/drug effects , Chromosomal Proteins, Non-Histone/deficiency , DNA Helicases/antagonists & inhibitors , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Nuclear Proteins/antagonists & inhibitors , Pyridines/pharmacology , Transcription Factors/antagonists & inhibitors , Transcription Factors/deficiency , Binding, Competitive , Catalysis , Cell Line, Tumor , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , DNA Helicases/chemistry , DNA Helicases/deficiency , DNA, Complementary/genetics , Gene Knockout Techniques , Genetic Complementation Test , Humans , Lung Neoplasms/pathology , Microarray Analysis , Neoplasms/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/deficiency , Protein Structure, Tertiary , RNA Interference , RNA, Small Interfering/pharmacology , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , Sarcoma, Synovial/genetics , Sarcoma, Synovial/pathology , Transcription Factors/chemistry , Transcription Factors/genetics
7.
Biochem J ; 466(2): 337-46, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25486442

ABSTRACT

Preventing histone recognition by bromodomains emerges as an attractive therapeutic approach in cancer. Overexpression of ATAD2 (ATPase family AAA domain-containing 2 isoform A) in cancer cells is associated with poor prognosis making the bromodomain of ATAD2 a promising epigenetic therapeutic target. In the development of an in vitro assay and identification of small molecule ligands, we conducted structure-guided studies which revealed a conformationally flexible ATAD2 bromodomain. Structural studies on apo-, peptide-and small molecule-ATAD2 complexes (by co-crystallization) revealed that the bromodomain adopts a 'closed', histone-compatible conformation and a more 'open' ligand-compatible conformation of the binding site respectively. An unexpected conformational change of the conserved asparagine residue plays an important role in driving the peptide-binding conformation remodelling. We also identified dimethylisoxazole-containing ligands as ATAD2 binders which aided in the validation of the in vitro screen and in the analysis of these conformational studies.


Subject(s)
Adenosine Triphosphatases/chemistry , DNA-Binding Proteins/chemistry , Drug Design , Enzyme Inhibitors/chemistry , Histones/chemistry , Isoxazoles/chemistry , Peptide Fragments/chemistry , Protein Processing, Post-Translational , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Biotinylation , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Histones/antagonists & inhibitors , Histones/metabolism , Humans , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , Kinetics , Ligands , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Pliability , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology , meta-Aminobenzoates/chemical synthesis , meta-Aminobenzoates/chemistry , meta-Aminobenzoates/pharmacology
8.
Bioorg Med Chem Lett ; 23(12): 3565-9, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23664880

ABSTRACT

A novel series of indole/indazole-aminopyrimidines was designed and synthesized with an aim to achieve optimal potency and selectivity for the c-Jun kinase family or JNKs. Structure guided design was used to optimize the series resulting in a significant potency improvement. The best compound (17) has IC50 of 3 nM for JNK1 and 20 nM for JNK2, with greater than 40-fold selectivity against other kinases with good physicochemical and pharmacokinetic properties.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Crystallography, X-Ray , Indazoles/chemistry , Indazoles/pharmacology , JNK Mitogen-Activated Protein Kinases/chemistry , Phosphorylation , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 23(5): 1486-92, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23352510

ABSTRACT

A series of amino-pyrimidines was developed based upon an initial kinase cross-screening hit from a CDK2 program. Kinase profiling and structure-based drug design guided the optimization from the initial 1,2,3-benzotriazole hit to a potent and selective JNK inhibitor, compound 24f (JNK1 and 2 IC(50)=16 and 66 nM, respectively), with bioavailability in rats and suitable for further in vivo pharmacological evaluation.


Subject(s)
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Animals , Crystallography, X-Ray , Drug Design , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Rats , Structure-Activity Relationship , Triazoles/chemical synthesis
10.
J Med Chem ; 55(12): 5887-900, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22626259

ABSTRACT

PI3Kδ is a lipid kinase and a member of a larger family of enzymes, PI3K class IA(α, ß, δ) and IB (γ), which catalyze the phosphorylation of PIP2 to PIP3. PI3Kδ is mainly expressed in leukocytes, where it plays a critical, nonredundant role in B cell receptor mediated signaling and provides an attractive opportunity to treat diseases where B cell activity is essential, e.g., rheumatoid arthritis. We report the discovery of novel, potent, and selective PI3Kδ inhibitors and describe a structural hypothesis for isoform (α, ß, γ) selectivity gained from interactions in the affinity pocket. The critical component of our initial pharmacophore for isoform selectivity was strongly associated with CYP3A4 time-dependent inhibition (TDI). We describe a variety of strategies and methods for monitoring and attenuating TDI. Ultimately, a structure-based design approach was employed to identify a suitable structural replacement for further optimization.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Cytochrome P-450 CYP3A Inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Arthritis, Rheumatoid/enzymology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Line , Cytochrome P-450 CYP3A , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Inhibitory Concentration 50 , Models, Molecular , Phosphatidylinositol 3-Kinases/chemistry , Protein Conformation , Substrate Specificity , Time Factors
11.
J Org Chem ; 64(6): 1843-1848, 1999 Mar 19.
Article in English | MEDLINE | ID: mdl-11674272

ABSTRACT

The insertions of p-tolyl and tert-butyl isocyanide into siliranes yielded iminosilacyclobutanes with stereospecific retention of configuration. Monosubstituted siliranes underwent insertion into the more substituted Si-C bond of the ring, although this regioselectivity was eroded as substitution increased on the silirane ring. The iminosilacyclobutane products tautomerized thermally or in the presence of a palladium catalyst to yield the thermodynamically more stable aminosilacyclobutenes. Ring-expansion reactions of iminosilacyclobutanes were promoted by acids: treatment with aqueous copper sulfate produced an oxasilacyclopentane in high yield, whereas with trifluoroacetic acid, oxasilacyclohexanes were formed.

SELECTION OF CITATIONS
SEARCH DETAIL