Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Natl Cancer Inst ; 115(7): 838-852, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37040084

ABSTRACT

BACKGROUND: Adenoid cystic carcinoma (ACC) is a lethal malignancy of exocrine glands, characterized by the coexistence within tumor tissues of 2 distinct populations of cancer cells, phenotypically similar to the myoepithelial and ductal lineages of normal salivary epithelia. The developmental relationship linking these 2 cell types, and their differential vulnerability to antitumor treatments, remains unknown. METHODS: Using single-cell RNA sequencing, we identified cell-surface markers (CD49f, KIT) that enabled the differential purification of myoepithelial-like (CD49fhigh/KITneg) and ductal-like (CD49flow/KIT+) cells from patient-derived xenografts (PDXs) of human ACCs. Using prospective xenotransplantation experiments, we compared the tumor-initiating capacity of the 2 cell types and tested whether one could differentiate into the other. Finally, we searched for signaling pathways with differential activation between the 2 cell types and tested their role as lineage-specific therapeutic targets. RESULTS: Myoepithelial-like cells displayed higher tumorigenicity than ductal-like cells and acted as their progenitors. Myoepithelial-like and ductal-like cells displayed differential expression of genes encoding for suppressors and activators of retinoic acid signaling, respectively. Agonists of retinoic acid receptor (RAR) or retinoid X receptor (RXR) signaling (all-trans retinoic acid, bexarotene) promoted myoepithelial-to-ductal differentiation, whereas suppression of RAR/RXR signaling with a dominant-negative RAR construct abrogated it. Inverse agonists of RAR/RXR signaling (BMS493, AGN193109) displayed selective toxicity against ductal-like cells and in vivo antitumor activity against PDX models of human ACC. CONCLUSIONS: In human ACCs, myoepithelial-like cells act as progenitors of ductal-like cells, and myoepithelial-to-ductal differentiation is promoted by RAR/RXR signaling. Suppression of RAR/RXR signaling is lethal to ductal-like cells and represents a new therapeutic approach against human ACCs.


Subject(s)
Antineoplastic Agents , Carcinoma, Adenoid Cystic , Receptors, Retinoic Acid , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Adenoid Cystic/drug therapy , Drug Inverse Agonism , Prospective Studies , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors , Tretinoin
2.
Clin Transl Immunology ; 12(3): e1434, 2023.
Article in English | MEDLINE | ID: mdl-36969367

ABSTRACT

Objectives: The very rapidly approved mRNA-based vaccines against SARS-CoV-2 spike glycoprotein, including Pfizer-BioNTech BNT162b2, are effective in protecting from severe coronavirus disease 2019 (COVID-19) in immunocompetent population. However, establishing the duration and identifying correlates of vaccine-induced protection will be crucial to optimise future immunisation strategies. Here, we studied in healthy vaccine recipients and people with multiple sclerosis (pwMS), undergoing different therapies, the regulation of innate immune response by mRNA vaccination in order to correlate it with the magnitude of vaccine-induced protective humoral responses. Methods: Healthy subjects (n = 20) and matched pwMS (n = 22) were longitudinally sampled before and after mRNA vaccination. Peripheral blood mononuclear cell (PBMC)-associated type I and II interferon (IFN)-inducible gene expression, serum innate cytokine/chemokine profile as well as binding and neutralising anti-SARS-COV-2 antibodies (Abs) were measured. Results: We identified an early immune module composed of the IFN-inducible genes Mx1, OAS1 and IRF1, the serum cytokines IL-15, IL-6, TNF-α and IFN-γ and the chemokines IP-10, MCP-1 and MIG, induced 1 day post second and third BNT162b2 vaccine doses, strongly correlating with magnitude of humoral response to vaccination in healthy and MS vaccinees. Moreover, induction of the early immune module was dramatically affected in pwMS treated with fingolimod and ocrelizumab, both groups unable to induce a protective humoral response to COVID-19 vaccine. Conclusion: Overall, this study suggests that the vaccine-induced early regulation of innate immunity is mediated by IFN signalling, impacts on the magnitude of adaptive responses and it might be indicative of vaccine-induced humoral protection.

3.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34272306

ABSTRACT

BACKGROUND: Patients affected by aggressive B-cell malignancies who are resistant to primary or salvage chemoimmunotherapy have an extremely poor prognosis and limited therapeutic options. Promising therapeutic success has been achieved with the infusion of CD19 chimeric antigen receptor-T cells, but several limits still restrain the administration to a limited proportion of patients. This unmet clinical need might be fulfilled by an adoptive immunotherapy approach that combines cytokine-induced killer (CIK) cells and monoclonal antibodies (mAb) to the CD20 antigen. Indeed, CIK cells are an effector population endowed with antitumor activity, which can be further improved and antigen-specifically redirected by clinical-grade mAb triggering antibody-dependent cell-mediated cytotoxicity. METHODS: CIK cells were generated from peripheral blood of patients affected by different B-cell malignancies using a blinatumomab-based cell culture protocol. Effector cells were combined with the anti-CD20 mAb obinutuzumab and their therapeutic activity was assessed both in vitro and in vivo. RESULTS: CIK cells were successfully expanded in clinically relevant numbers, starting from small volumes of peripheral blood with extremely low CD3+ counts and high tumor burden. This relied on the addition of blinatumumab in culture, which leads to the simultaneous expansion of effector cells and the complete elimination of the neoplastic component. Moreover, CIK cells were highly cytotoxic in vitro against both B-cell tumor cell lines and autologous neoplastic targets, and had a significant therapeutic efficacy against a B-cell malignancy patient-derived xenograft on in vivo transfer. CONCLUSIONS: The combination of an easily expandable CIK cell effector population with a mAb already in clinical use establishes a tumor antigen-specific redirection strategy that can be rapidly translated into clinical practice, providing an effective therapeutic alternative for B-cell malignancies without any need for genetic modifications. Additionally, the approach can be potentially applied to an extremely vast array of different tumors by simply substituting the targeting mAb.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Cytokine-Induced Killer Cells/metabolism , Lymphoma, B-Cell/drug therapy , Aged , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Female , Humans , Lymphoma, B-Cell/pathology , Mice , Mice, Inbred NOD
4.
Oncoimmunology ; 9(1): 1777046, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32923140

ABSTRACT

Cytokine-Induced Killer (CIK) cells share several functional and phenotypical properties of both T and natural killer (NK) cells. They represent an attractive approach for cell-based immunotherapy, as they do not require antigen-specific priming for tumor cell recognition, and can be rapidly expanded in vitro. Their relevant expression of FcγRIIIa (CD16a) can be exploited in combination with clinical-grade monoclonal antibodies (mAbs) to redirect their lytic activity in an antigen-specific manner. Here, we report the efficacy of this combined approach against triple negative breast cancer (TNBC), an aggressive tumor that still requires therapeutic options. Different primitive and metastatic TNBC cancer mouse models were established in NSG mice, either by implanting patient-derived TNBC samples or injecting MDA-MB-231 cells orthotopically or intravenously. The combined treatment consisted in the repeated intratumoral or intravenous injection of CIK cells and cetuximab. Tumor growth and metastasis were monitored by bioluminescence or immunohistochemistry, and survival was recorded. CIK cells plus cetuximab significantly restrained primitive tumor growth in mice, either in patient-derived tumor xenografts or MDA-MB-231 cell line models. Moreover, this approach almost completely abolished metastasis spreading and dramatically improved survival. The antigen-specific mAb favored tumor and metastasis tissue infiltration by CIK cells, and led to an enrichment of the CD16a+ subset.Data highlight the potentiality of this novel immunotherapy strategy where a nonspecific cytotoxic cell population can be converted into tumor-specific effectors with clinical-grade antibodies, thus providing not only a therapeutic option for TNBC but also a valid alternative to more complex approaches based on chimeric antigen receptor-engineered cells. List of abbreviations: ACT, Adoptive Cell Transfer; ADCC, Antibody-Dependent Cell-mediated Cytotoxicity; ADP, Adenosine diphosphate; BLI, Bioluminescence Imaging; CAR, Chimeric Antigen Receptor; CIK, Cytokine Induced Killer cells; CTX, Cetuximab; DMEM, Dulbecco's Modified Eagle Medium; EGFR, Human Epidermal Growth Factor 1; ER, Estrogen; FBS, Fetal Bovine Serum; FFPE, Formalin-Fixed Paraffin-Embedded; GMP, Good Manufacturing Practices; GVHD, Graft Versus Host Disease; HER2, Human Epidermal Growth Factor 2; HRP, Horseradish Peroxidase; IFN-γ, Interferon-γ; IHC, Immunohistochemistry; IL-2, Interleukin-2; ISO, Irrelevant antibody; i.t., intratumoral; i.v., intravenous, mAbs, Monoclonal Antibodies; mIHC, Multiplex Fluorescence Immunohistochemistry; MHC, Major Histocompatibility Complex; NK, Natural Killer; NKG2D, Natural-Killer group 2 member D; NSG, NOD/SCID common γ chain knockout; PARP, Poly ADP-ribose polymerase; PBMCs, Peripheral Blood Mononuclear Cells; PBS, Phosphate-buffered saline; PDX, Patient-derived xenograft; PR, Progesterone; rhIFN-γ, Recombinant Human Interferon-γ; RPMI, Roswell Park Memorial Institute; STR, Short tandem Repeat; TCR, T Cell Receptor; TNBC, Triple Negative Breast Cancer; TSA, Tyramide Signal Amplification.


Subject(s)
Cytokine-Induced Killer Cells , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Cell- and Tissue-Based Therapy , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Triple Negative Breast Neoplasms/therapy
5.
Cytotherapy ; 22(9): 511-518, 2020 09.
Article in English | MEDLINE | ID: mdl-32631696

ABSTRACT

Cytokine-Induced (CIK) cells represent an attractive approach for cell-based immunotherapy, as they show several advantages compared with other strategies. Here we describe an original serum-free protocol for CIK cell expansion that employs G-Rex devices and compare the resulting growth, viability, phenotypic profile and cytotoxic activity with conventional culture in tissue flasks. CIK cells were obtained from buffy coats, seeded in parallel in G-Rex and tissue flasks, and stimulated with clinical-grade IFN-γ, anti-CD3 antibody and IL-2. G-Rex led to large numbers of CIK cells, with a minimal need for technical interventions, thus reducing the time and costs of culture manipulation. CIK cells generated in G-Rex showed a less differentiated phenotype, with a significantly higher expression of naive-associated markers such as CD62L, CD45RA and CCR7, which correlates with a remarkable expansion potential in culture and could lead to longer persistence and a more sustained anti-tumor response in vivo. The described procedure can be easily translated to large-scale production under Good Manufacturing Practice. Overall, this protocol has strong advantages over existing procedures, as it allows easier, time-saving and cost-effective production of CIK effector cells, fostering their clinical application.


Subject(s)
Cell Culture Techniques/instrumentation , Culture Media, Serum-Free/pharmacology , Cytokine-Induced Killer Cells/cytology , Gases/chemistry , Cell Death/drug effects , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Cytokine-Induced Killer Cells/immunology , Cytotoxicity, Immunologic/drug effects , Humans , Immunologic Memory/drug effects , Permeability , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL