Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 169: 115925, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38007933

ABSTRACT

BACKGROUND: Rhabdomyolysis is a severe clinical syndrome associated to acute kidney injury (AKI) and chronic kidney disease (CKD). TWEAK/Fn14 signaling axis regulates renal inflammation and tubular cell death. However, the functional role of TWEAK/Fn14 in rhabdomyolysis remains unknown. METHODS: Rhabdomyolysis was induced in wild-type, TWEAK- and Fn14-deficient mice or mice treated with TWEAK blocking antibody. Renal injury, inflammation, fibrosis and cell death were assessed. Additionally, we performed in vivo and in vitro studies to explore the possible signalling pathways involved in Fn14 regulation. FINDINGS: Fn14 renal expression was increased in mice with rhabdomyolysis, correlating with decline of renal function. Mechanistically, myoglobin (Mb) induced Fn14 expression via ERK and p38 pathway, whereas Nrf2 activation diminished Mb-mediated Fn14 upregulation in cultured renal cells. TWEAK or Fn14 genetic depletion ameliorated rhabdomyolysis-associated loss of renal function, histological damage, tubular cell death, inflammation, and expression of both tubular and endothelial injury markers. Deficiency of TWEAK or Fn14 also decreased long-term renal inflammation and fibrosis in mice with rhabdomyolysis. Finally, pharmacological treatment with a blocking TWEAK antibody diminished the expression of acute renal injury markers and cell death and lessened residual kidney fibrosis and chronic inflammation in rhabdomyolysis. INTERPRETATION: TWEAK/Fn14 axis participates in the pathogenesis of rhabdomyolysis-AKI and subsequent AKI-CKD transition. Blockade of this signaling pathway may represent a promising therapeutic strategy for reducing rhabdomyolysis-mediated renal injury. FUNDING: Spanish Ministry of Science and Innovation, ISCIII and Junta de Andalucía.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Rhabdomyolysis , Animals , Mice , Acute Kidney Injury/metabolism , Cytokine TWEAK/metabolism , Fibrosis , Inflammation , Rhabdomyolysis/complications , Tumor Necrosis Factors/metabolism , TWEAK Receptor/metabolism
2.
Antioxidants (Basel) ; 12(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37760032

ABSTRACT

The role of inflammation and immunity in the pathomechanism of neurodegenerative diseases has become increasingly relevant within the past few years. In this context, the NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in the activation of inflammatory responses by promoting the maturation and secretion of pro-inflammatory cytokines such as interleukin-1ß and interleukin-18. We hypothesized that the interplay between nuclear factor erythroid 2-related factor 2 (Nrf2) and NADPH oxidase 4 (NOX4) may play a critical role in the activation of the NLRP3 inflammasome and subsequent inflammatory responses. After priming mixed glial cultures with lipopolysaccharide (LPS), cells were stimulated with ATP, showing a significant reduction of IL1-ß release in NOX4 and Nrf2 KO mice. Importantly, NOX4 inhibition using GKT136901 also reduced IL-1ß release, as in NOX4 KO mixed glial cultures. Moreover, we measured NOX4 and NLRP3 expression in wild-type mixed glial cultures following LPS treatment, observing that both increased after TLR4 activation, while 24 h treatment with tert-butylhydroquinone, a potent Nrf2 inducer, significantly reduced NLRP3 expression. LPS administration resulted in significant cognitive impairment compared to the control group. Indeed, LPS also modified the expression of NLRP3 and NOX4 in mouse hippocampus. However, mice treated with GKT136901 after LPS impairment showed a significantly improved discrimination index and recovered the expression of inflammatory genes to normal levels compared with wild-type animals. Hence, we here validate NOX4 as a key player in NLRP3 inflammasome activation, suggesting NOX4 pharmacological inhibition as a potent therapeutic approach in neurodegenerative diseases.

3.
Pharmaceutics ; 14(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893807

ABSTRACT

Despite the numerous research studies on traumatic brain injury (TBI), many physiopathologic mechanisms remain unknown. TBI is a complex process, in which neuroinflammation and glial cells play an important role in exerting a functional immune and damage-repair response. The activation of the NLRP3 inflammasome is one of the first steps to initiate neuroinflammation and so its regulation is essential. Using a closed-head injury model and a pharmacological (MCC950; 3 mg/kg, pre- and post-injury) and genetical approach (NLRP3 knockout (KO) mice), we defined the transcriptional and behavioral profiles 24 h after TBI. Wild-type (WT) mice showed a strong pro-inflammatory response, with increased expression of inflammasome components, microglia and astrocytes markers, and cytokines. There was no difference in the IL1ß production between WT and KO, nor compensatory mechanisms of other inflammasomes. However, some microglia and astrocyte markers were overexpressed in KO mice, resulting in an exacerbated cytokine expression. Pretreatment with MCC950 replicated the behavioral and blood-brain barrier results observed in KO mice and its administration 1 h after the lesion improved the damage. These findings highlight the importance of NLRP3 time-dependent activation and its role in the fine regulation of glial response.

4.
J Med Chem ; 65(8): 6250-6260, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35403430

ABSTRACT

NLRP3 is involved in the pathophysiology of several inflammatory diseases. Therefore, there is high current interest in the clinical development of new NLRP3 inflammasome small inhibitors to treat these diseases. Novel N-sulfonylureas were obtained by the replacement of the hexahydroindacene moiety of the previously described NLRP3 inhibitor MCC950. These new derivatives show moderate to high potency in inhibiting IL-1ß release in vitro. The greatest effect was observed for compound 4b, which was similar to MCC950. Moreover, compound 4b was able to reduce caspase-1 activation, oligomerization of ASC, and therefore, IL-1ß processing. Additional in silico predictions confirmed the safety profile of compound 4b, and in vitro studies in AML12 hepatic cells confirmed the absence of toxicological effects. Finally, we evaluated in vivo anti-inflammatory properties of compound 4b, which showed a significant anti-inflammatory effect and reduced mechanical hyperalgesia at 3 and 10 mg/kg (i.p.) in an in vivo mouse model of gout.


Subject(s)
Gout , Inflammasomes , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Hyperalgesia , Interleukin-1beta , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein
5.
Br J Pharmacol ; 179(7): 1395-1410, 2022 04.
Article in English | MEDLINE | ID: mdl-34773639

ABSTRACT

BACKGROUND: Inflammasomes are cytosolic multiprotein complexes which, upon assembly, activate the maturation and secretion of the inflammatory cytokines IL-1ß and IL-18. However, participation of the NLRP3 inflammasome in ischaemic stroke remains controversial. Our aims were to determine the role of NLRP3 in brain ischaemia, and explore the mechanism involved in the potential protective effect of the neurovascular unit. METHODS: WT and NLRP3 knock-out mice were subjected to ischaemia by middle cerebral artery occlusion (60 min) with or without treatment with MCC950 at different time points post-stroke. Brain injury was measured histologically with 2,3,5-triphenyltetrazolium chloride (TTC) staining. RESULTS: We identified a time-dependent dual effect of NLRP3. While neither the pre-treatment with MCC950 nor the genetic approach (NLRP3 KO) proved to be neuroprotective, post-reperfusion treatment with MCC950 significantly reduced the infarct volume in a dose-dependent manner. Importantly, MCC950 improved the neuro-motor function and reduced the expression of different pro-inflammatory cytokines (IL-1ß and TNF-α), NLRP3 inflammasome components (NLRP3 and pro-caspase-1), protease expression (MMP9), and endothelial adhesion molecules (ICAM and VCAM). We observed a marked protection of the blood-brain barrier (BBB), which was also reflected in the recovery of the tight junction proteins (ZO-1 and Claudin-5). Additionally, MCC950 produced a reduction of the CCL2 chemokine in blood serum and in brain tissue, which lead to a reduction in the immune cell infiltration. CONCLUSIONS: These findings suggest that post-reperfusion NLRP3 inhibition may be an effective acute therapy for protecting the blood-brain barrier in cerebral ischaemia with potential clinical translation.


Subject(s)
Brain Ischemia , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Stroke , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Cytokines/metabolism , Furans/pharmacology , Furans/therapeutic use , Indenes , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Stroke/drug therapy , Sulfonamides , Tumor Necrosis Factor-alpha/drug effects
6.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34577561

ABSTRACT

Cerebrovascular diseases such as ischemic stroke are known to exacerbate dementia caused by neurodegenerative pathologies such as Alzheimer's disease (AD). Besides, the increasing number of patients surviving stroke makes it necessary to treat the co-occurrence of these two diseases with a single and combined therapy. For the development of new dual therapeutic agents, eight hybrid quinolylnitrones have been designed and synthesized by the juxtaposition of selected pharmacophores from our most advanced lead-compounds for ischemic stroke and AD treatment. Biological analyses looking for efficient neuroprotective effects in suitable phenotypic assays led us to identify MC903 as a new small quinolylnitrone for the potential dual therapy of stroke and AD, showing strong neuroprotection on (i) primary cortical neurons under oxygen-glucose deprivation/normoglycemic reoxygenation as an experimental ischemia model; (ii), neuronal line cells treated with rotenone/oligomycin A, okadaic acid or ß-amyloid peptide Aß25-35, modeling toxic insults found among the effects of AD.

7.
Biomedicines ; 9(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070533

ABSTRACT

Traumatic brain injury (TBI) is one of the leading causes of mortality and disability worldwide without any validated biomarker or set of biomarkers to help the diagnosis and evaluation of the evolution/prognosis of TBI patients. To achieve this aim, a deeper knowledge of the biochemical and pathophysiological processes triggered after the trauma is essential. Here, we identified the serum amyloid A1 protein-Toll-like receptor 4 (SAA1-TLR4) axis as an important link between inflammation and the outcome of TBI patients. Using serum and mRNA from white blood cells (WBC) of TBI patients, we found a positive correlation between serum SAA1 levels and injury severity, as well as with the 6-month outcome of TBI patients. SAA1 levels also correlate with the presence of TLR4 mRNA in WBC. In vitro, we found that SAA1 contributes to inflammation via TLR4 activation that releases inflammatory cytokines, which in turn increases SAA1 levels, establishing a positive proinflammatory loop. In vivo, post-TBI treatment with the TLR4-antagonist TAK242 reduces SAA1 levels, improves neurobehavioral outcome, and prevents blood-brain barrier disruption. Our data support further evaluation of (i) post-TBI treatment in the presence of TLR4 inhibition for limiting TBI-induced damage and (ii) SAA1-TLR4 as a biomarker of injury progression in TBI patients.

8.
Br J Pharmacol ; 178(17): 3395-3413, 2021 09.
Article in English | MEDLINE | ID: mdl-33830504

ABSTRACT

BACKGROUND AND PURPOSE: Activation of astrocytes contributes to synaptic remodelling, tissue repair and neuronal survival following traumatic brain injury (TBI). The mechanisms by which these cells interact to resident/infiltrated inflammatory cells to rewire neuronal networks and repair brain functions remain poorly understood. Here, we explored how TLR4-induced astrocyte activation modified synapses and cerebrovascular integrity following TBI. EXPERIMENTAL APPROACH: To determine how functional astrocyte alterations induced by activation of TLR4 pathway in inflammatory cells regulate synapses and neurovascular integrity after TBI, we used pharmacology, genetic approaches, live calcium imaging, immunofluorescence, flow cytometry, blood-brain barrier (BBB) integrity assessment and molecular and behavioural methods. KEY RESULTS: Shortly after a TBI, there is a recruitment of excitable and reactive astrocytes mediated by TLR4 pathway activation with detrimental effects on post-synaptic density-95 (PSD-95)/vesicular glutamate transporter 1 (VGLUT1) synaptic puncta, BBB integrity and neurological outcome. Pharmacological blockage of the TLR4 pathway with resatorvid (TAK-242) partially reversed many of the observed effects. Synapses and BBB recovery after resatorvid administration were not observed in IP3 R2-/- mice, indicating that effects of TLR4 inhibition depend on the subsequent astrocyte activation. In addition, TBI increased the astrocytic-protein thrombospondin-1 necessary to induce a synaptic recovery in a sub-acute phase. CONCLUSIONS AND IMPLICATIONS: Our data demonstrate that TLR4-mediated signalling, most probably through microglia and/or infiltrated monocyte-astrocyte communication, plays a crucial role in the TBI pathophysiology and that its inhibition prevents synaptic loss and BBB damage accelerating tissue recovery/repair, which might represent a therapeutic potential in CNS injuries and disorders.


Subject(s)
Astrocytes , Brain Injuries, Traumatic , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Mice , Microglia/metabolism , Neurons/metabolism , Toll-Like Receptor 4/metabolism
9.
Antioxidants (Basel) ; 9(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353046

ABSTRACT

Microglia controls the immune system response in the brain. Specifically, the activation and dysregulation of the NLRP3 inflammasome is responsible for the initiation of the inflammatory process through IL-1ß and IL-18 release. In this work, we have focused on studying the effect of melatonin on the regulation of the NLRP3 inflammasome through α7 nicotinic receptor (nAChR) and its relationship with autophagy. For this purpose, we have used pharmacological and genetic approaches in lipopolysaccharide (LPS)-induced inflammation models in both in vitro and in vivo models. In the BV2 cell line, LPS inhibited autophagy, which increased NLRP3 protein levels. However, melatonin promoted an increase in the autophagic flux. Treatment of glial cultures from wild-type (WT) mice with LPS followed by extracellular adenosine triphosphate (ATP) produced the release of IL-1ß, which was reversed by melatonin pretreatment. In cultures from α7 nAChR knock-out (KO) mice, melatonin did not reduce IL-1ß release. Furthermore, melatonin decreased the expression of inflammasome components and reactive oxygen species (ROS) induced by LPS; co-incubation of melatonin with α-bungarotoxin (α-bgt) or luzindole abolished the anti-inflammatory and antioxidant effects. In vivo, melatonin reverted LPS-induced cognitive decline, reduced NLRP3 levels and promoted autophagic flux in the hippocampi of WT mice, whereas in α7 nAChR KO mice melatonin effect was not observed. These results suggest that melatonin may modulate the complex interplay between α7 nAChR and autophagy signaling.

10.
Nature ; 586(7828): 287-291, 2020 10.
Article in English | MEDLINE | ID: mdl-32728214

ABSTRACT

All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.


Subject(s)
Electron Transport , Hypoxia/metabolism , Mitochondria/metabolism , Second Messenger Systems , Sodium/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Calcium Phosphates/metabolism , Cell Line, Tumor , Chemical Precipitation , Humans , Male , Membrane Fluidity , Mice, Inbred C57BL , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Sodium-Calcium Exchanger/metabolism
11.
Antioxidants (Basel) ; 10(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396350

ABSTRACT

Chronic kidney disease (CKD) is one of the fastest-growing causes of death and is predicted to become by 2040 the fifth global cause of death. CKD is characterized by increased oxidative stress and chronic inflammation. However, therapies to slow or prevent CKD progression remain an unmet need. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that plays a key role in protection against oxidative stress and regulation of the inflammatory response. Consequently, the use of compounds targeting Nrf2 has generated growing interest for nephrologists. Pre-clinical and clinical studies have demonstrated that Nrf2-inducing strategies prevent CKD progression and protect from acute kidney injury (AKI). In this article, we review current knowledge on the protective mechanisms mediated by Nrf2 against kidney injury, novel therapeutic strategies to induce Nrf2 activation, and the status of ongoing clinical trials targeting Nrf2 in renal diseases.

12.
J Med Chem ; 62(24): 11416-11422, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31724859

ABSTRACT

New tritarget small molecules combining Ca2+ channels blockade, cholinesterase, and H3 receptor inhibition were obtained by multicomponent synthesis. Compound 3p has been identified as a very promising lead, showing good Ca2+ channels blockade activity (IC50 = 21 ± 1 µM), potent affinity against hH3R (Ki = 565 ± 62 nM), a moderate but selective hBuChE inhibition (IC50 = 7.83 ± 0.10 µM), strong antioxidant power (3.6 TE), and ability to restore cognitive impairment induced by lipopolysaccharide.


Subject(s)
Alzheimer Disease/drug therapy , Calcium Channel Blockers/pharmacology , Cholinesterase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Receptors, Histamine H3/chemistry , Small Molecule Libraries/pharmacology , Vasodilator Agents/pharmacology , Alzheimer Disease/metabolism , Animals , Calcium Channel Blockers/chemistry , Cholinesterase Inhibitors/chemistry , Humans , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroprotective Agents/chemistry , Small Molecule Libraries/chemistry , Tumor Cells, Cultured , Vasodilator Agents/chemistry
13.
Br J Pharmacol ; 176(15): 2764-2779, 2019 08.
Article in English | MEDLINE | ID: mdl-31074003

ABSTRACT

BACKGROUND AND PURPOSE: Ischaemic stroke is a leading cause of death, disability, and a high unmet medical need. Post-reperfusion inflammation and an up-regulation of toll-like receptor 4 (TLR4), an upstream sensor of innate immunity, are associated with poor outcome in stroke patients. Here, we identified the therapeutic effect of targeting the LPS/TLR4 signal transduction pathway. EXPERIMENTAL APPROACH: We tested the effect of the TLR4 inhibitor, eritoran (E5564) in different in vitro ischaemia-related models: human organotypic cortex culture, rat organotypic hippocampal cultures, and primary mixed glia cultures. We explored the therapeutic window of E5564 in the transient middle cerebral artery occlusion model of cerebral ischaemia in mice. KEY RESULTS: In vivo, administration of E5564 1 and 4 hr post-ischaemia reduced the expression of different pro-inflammatory chemokines and cytokines, infarct volume, blood-brain barrier breakdown, and improved neuromotor function, an important clinically relevant outcome. In the human organotypic cortex culture, E5564 reduced the activation of microglia and ROS production evoked by LPS. CONCLUSION AND IMPLICATIONS: TLR4 signalling has a causal role in the inflammation associated with a poor post-stroke outcome. Importantly, its inhibition by eritoran (E5564) provides neuroprotection both in vitro and in vivo, including in human tissue, suggesting a promising new therapeutic approach for ischaemic stroke.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Brain Ischemia/drug therapy , Lipid A/analogs & derivatives , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Brain/drug effects , Brain/metabolism , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Cell Line , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Lipid A/pharmacology , Lipid A/therapeutic use , Male , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Phenotype , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/metabolism
14.
Molecules ; 24(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999586

ABSTRACT

We report the synthesis and relevant pharmacological properties of the quinoxalinetacrine (QT) hybrid QT78 in a project targeted to identify new non-hepatotoxic tacrine derivatives for Alzheimer's disease therapy. We have found that QT78 is less toxic than tacrine at high concentrations (from 100 µM to 1 mM), less potent than tacrine as a ChE inhibitor, but shows selective BuChE inhibition (IC50 (hAChE) = 22.0 ± 1.3 µM; IC50 (hBuChE) = 6.79 ± 0.33 µM). Moreover, QT78 showed effective and strong neuroprotection against diverse toxic stimuli, such as rotenone plus oligomycin-A or okadaic acid, of biological significance for Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors , Tacrine , Alzheimer Disease/enzymology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/pharmacology , Hep G2 Cells , Humans , Tacrine/chemistry , Tacrine/pharmacokinetics , Tacrine/pharmacology
15.
FASEB J ; 33(8): 8961-8975, 2019 08.
Article in English | MEDLINE | ID: mdl-31034781

ABSTRACT

Acute kidney injury is a common complication of rhabdomyolysis. A better understanding of this syndrome may be useful to identify novel therapeutic targets because there is no specific treatment so far. Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death that is involved in renal injury. In this study, we investigated whether ferroptosis is associated with rhabdomyolysis-mediated renal damage, and we studied the therapeutic effect of curcumin, a powerful antioxidant with renoprotective properties. Induction of rhabdomyolysis in mice increased serum creatinine levels, endothelial damage, inflammatory chemokines, and cytokine expression, alteration of redox balance (increased lipid peroxidation and decreased antioxidant defenses), and tubular cell death. Treatment with curcumin initiated before or after rhabdomyolysis induction ameliorated all these pathologic and molecular alterations. Although apoptosis or receptor-interacting protein kinase (RIPK)3-mediated necroptosis were activated in rhabdomyolysis, our results suggest a key role of ferroptosis. Thus, treatment with ferrostatin 1, a ferroptosis inhibitor, improved renal function in glycerol-injected mice, whereas no beneficial effects were observed with the pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-(O-methyl)-fluoromethylketone or in RIPK3-deficient mice. In cultured renal tubular cells, myoglobin (Mb) induced ferroptosis-sensitive cell death that was also inhibited by curcumin. Mechanistic in vitro studies showed that curcumin reduced Mb-mediated inflammation and oxidative stress by inhibiting the TLR4/NF-κB axis and activating the cytoprotective enzyme heme oxygenase 1. Our findings are the first to demonstrate the involvement of ferroptosis in rhabdomyolysis-associated renal damage and its sensitivity to curcumin treatment. Therefore, curcumin may be a potential therapeutic approach for patients with this syndrome.-Guerrero-Hue, M., García-Caballero, C., Palomino-Antolín, A., Rubio-Navarro, A., Vázquez-Carballo, C., Herencia, C., Martín-Sanchez, D., Farré-Alins, V., Egea, J., Cannata, P., Praga, M., Ortiz, A., Egido, J., Sanz, A. B., Moreno, J. A. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death.


Subject(s)
Acute Kidney Injury/drug therapy , Curcumin/pharmacology , Ferroptosis/drug effects , Rhabdomyolysis/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Animals , Antioxidants/pharmacology , Cells, Cultured , Disease Models, Animal , Heme Oxygenase-1/metabolism , Humans , MAP Kinase Signaling System/drug effects , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoglobin/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Rhabdomyolysis/complications , Rhabdomyolysis/pathology , Toll-Like Receptor 4/metabolism
16.
Front Neuroanat ; 13: 103, 2019.
Article in English | MEDLINE | ID: mdl-32038181

ABSTRACT

Microglia (MG) are the first cells to react to the abnormal incoming signals that follow an injury of sensory nerves and play a critical role in the development and maintenance of neuropathic pain, a common sequel of nerve injuries. Here we present population data on cell number, soma size, and length of processes of MG in the caudal division of the spinal trigeminal nucleus (Sp5C) in control mice and at the peak of microgliosis (7 days) following unilateral transection of the infraorbital nerve (IoN). The study is performed combining several bias- and assumption-free imaging and stereological approaches with different immunolabeling procedures, with the objective of tackling some hard problems that often hinder proper execution of MG morphometric studies. Our approach may easily be applied to low-density MG populations, but also works, with limited biases, in territories where MG cell bodies and processes form dense meshworks. In controls, and contralaterally to the deafferented side, MG cell body size and shape and branching pattern matched well the descriptions of "resting" or "surveillant" MG described elsewhere, with only moderate intersubject variability. On the superficial laminae of the deafferented side, however, MG displayed on average larger somata and remarkable diversity in shape. The number of cells and the length of MG processes per mm3 increased 5 and 2.5 times, respectively, indicating a net 50% decrease in the mean length of processes per cell. By using specific immunolabeling and cell sorting of vascular macrophages, we found only a negligible fraction of these cells in Sp5C, with no differences between controls and deafferented animals, suggesting that blood-borne monocytes play at most a very limited role in the microgliosis occurring following sensory nerve deafferentation. In sum, here we present reliable morphometric data on MG in control and deafferented trigeminal nuclei using efficient methods that we propose may equally be applied to any morphometric population analysis of these cells under different physiological or pathological conditions.

17.
Nefrología (Madrid) ; 38(1): 13-26, ene.-feb. 2018. ilus, graf, tab
Article in Spanish | IBECS | ID: ibc-170077

ABSTRACT

La hemoglobina y la mioglobina son hemoproteínas que juegan un papel fundamental en el organismo ya que participan en el transporte de oxígeno. Sin embargo, debido a su estructura química, estas moléculas pueden ejercer efectos deletéreos cuando se liberan al torrente sanguíneo de forma masiva, como sucede en determinadas condiciones patológicas asociadas a rabdomiólisis o hemólisis intravascular. Una vez en el plasma, estas hemoproteínas se pueden filtrar y acumular en el riñón, donde resultan citotóxicas, principalmente para el epitelio tubular, e inducen fracaso renal agudo y enfermedad renal crónica. En la presente revisión analizaremos los distintos contextos patológicos que provocan la acumulación renal de estas hemoproteínas, su relación con la pérdida de función renal a corto y largo plazo, los mecanismos fisiopatólogicos responsables de sus efectos adversos y los sistemas de defensa que contrarrestan tales acciones. Por último, describiremos los distintos tratamientos utilizados actualmente y mostraremos nuevas opciones terapéuticas basadas en la identificación de nuevas dianas celulares y moleculares, prestando especial atención a los diversos ensayos clínicos que se encuentran en marcha en la actualidad (AU)


Haemoglobin and myoglobin are haem proteins that play a key role as they help transport oxygen around the body. However, because of their chemical structure, these molecules can exert harmful effects when they are released massively into the bloodstream, as reported in certain pathological conditions associated with rhabdomyolysis or intravascular haemolysis. Once in the plasma, these haem proteins can be filtered and can accumulate in the kidney, where they become cytotoxic, particularly for the tubular epithelium, inducing acute kidney failure and chronic kidney disease. In this review, we will analyse the different pathological contexts that lead to the renal accumulation of these haem proteins, their relation to both acute and chronic loss of renal function, the pathophysiological mechanisms that cause adverse effects and the defence systems that counteract such actions. Finally, we will describe the different treatments currently used and present new therapeutic options based on the identification of new cellular and molecular targets, with particular emphasis on the numerous clinical trials that are currently ongoing (AU)


Subject(s)
Humans , Hemeproteins/adverse effects , Hemeproteins/therapeutic use , Kidney Failure, Chronic/complications , Oxidative Stress , Hemoglobinuria/etiology , Rhabdomyolysis/etiology , Renal Insufficiency, Chronic/physiopathology , Cell Death , Fibrosis/complications , Hemopexin/analysis , Hemopexin/therapeutic use
18.
Nefrologia (Engl Ed) ; 38(1): 13-26, 2018.
Article in English, Spanish | MEDLINE | ID: mdl-28668175

ABSTRACT

Haemoglobin and myoglobin are haem proteins that play a key role as they help transport oxygen around the body. However, because of their chemical structure, these molecules can exert harmful effects when they are released massively into the bloodstream, as reported in certain pathological conditions associated with rhabdomyolysis or intravascular haemolysis. Once in the plasma, these haem proteins can be filtered and can accumulate in the kidney, where they become cytotoxic, particularly for the tubular epithelium, inducing acute kidney failure and chronic kidney disease. In this review, we will analyse the different pathological contexts that lead to the renal accumulation of these haem proteins, their relation to both acute and chronic loss of renal function, the pathophysiological mechanisms that cause adverse effects and the defence systems that counteract such actions. Finally, we will describe the different treatments currently used and present new therapeutic options based on the identification of new cellular and molecular targets, with particular emphasis on the numerous clinical trials that are currently ongoing.


Subject(s)
Acute Kidney Injury/etiology , Hemeproteins/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Blood Proteins/physiology , Clinical Trials as Topic , Drugs, Investigational/therapeutic use , Hemolysis , Humans , Iron Chelating Agents/therapeutic use , Kidney Tubules/metabolism , Kidney Tubules/pathology , Oxidative Stress , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/therapy , Rhabdomyolysis/complications , Rhabdomyolysis/metabolism , Sodium Bicarbonate/therapeutic use , Therapies, Investigational
19.
Angew Chem Int Ed Engl ; 56(41): 12765-12769, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28861918

ABSTRACT

The therapy of complex neurodegenerative diseases requires the development of multitarget-directed drugs (MTDs). Novel indole derivatives with inhibitory activity towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H3 receptor (H3R) were obtained by optimization of the neuroprotectant ASS234 by incorporating generally accepted H3R pharmacophore motifs. These small-molecule hits demonstrated balanced activities at the targets, mostly in the nanomolar concentration range. Additional in vitro studies showed antioxidative neuroprotective effects as well as the ability to penetrate the blood-brain barrier. With this promising in vitro profile, contilisant (at 1 mg kg-1 i.p.) also significantly improved lipopolysaccharide-induced cognitive deficits.


Subject(s)
Antioxidants/chemistry , Cholinesterase Inhibitors/chemistry , Histamine H3 Antagonists/chemistry , Indoles/chemistry , Monoamine Oxidase Inhibitors/chemistry , Neuroprotective Agents/chemistry , Animals , Antioxidants/chemical synthesis , Antioxidants/pharmacokinetics , Antioxidants/therapeutic use , Blood-Brain Barrier/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/therapeutic use , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Drug Design , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/pharmacokinetics , Histamine H3 Antagonists/therapeutic use , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Indoles/therapeutic use , Ligands , Mice , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/pharmacokinetics , Monoamine Oxidase Inhibitors/therapeutic use , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/therapeutic use , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacokinetics , Piperidines/therapeutic use
20.
Curr Med Chem ; 24(33): 3583-3605, 2017.
Article in English | MEDLINE | ID: mdl-28494744

ABSTRACT

BACKGROUND: Renal disease is a serious health problem, with increasing incidence and prevalence. Oxidative stress and inflammation play a key role in the pathogenesis and progression of renal disease. Therefore, therapeutic approaches to decrease oxidative stress should be of interest. OBJECTIVE: This review aims to provide a comprehensive and updated overview of the protective mechanisms mediated by Nrf2 (nuclear factor erythroid 2-related factor 2), a description of novel compounds that target Nrf2, its effectiveness to prevent renal disease and the on-going clinical trials for this pathological condition. METHODS: We undertook a structured search of bibliographic databases for peer-reviewed research in literature about Nrf2 activators and renal disease. RESULTS: The transcription factor Nrf2 is an emerging regulator of cellular resistance to oxidants and inflammation. Nrf2 controls the basal and induced expression of a couple of cytoprotective and antiinflammatory genes that regulate the physiological and pathophysiological outcomes of oxidant exposure. We have analyzed numerous findings showing that Nrf2 induction protects against oxidative stress and modulates inflammation in acute kidney injury and chronic kidney disease progression. However, few clinical trials have been performed in humans. Recent studies suggested that renoprotective effects of Nrf2 activation are observed at low doses, whereas harmful effects appear at higher concentrations. CONCLUSION: The findings of this review confirm that novel studies are necessary to address whether Nrf2-targeting may be a safe therapeutic approach to decrease renal disease progression in humans.


Subject(s)
Acute Kidney Injury/drug therapy , Drug Discovery , Kidney/drug effects , NF-E2-Related Factor 2/agonists , NF-E2-Related Factor 2/metabolism , Renal Insufficiency, Chronic/drug therapy , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Gene Expression Regulation/drug effects , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Kidney/metabolism , Kidney/pathology , Molecular Targeted Therapy , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...