Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 8(71): 40712-40719, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-35557907

ABSTRACT

Nickel-doped ceria nanoparticles (Ni0.1Ce0.9O2-x NPs) were fabricated from Schiff-base complexes and characterized by various microscopic and spectroscopic methods. Clear evidence is provided for incorporation of nickel ions in the ceria lattice in the form of Ni3+ species which is considered as the hole trapped state of Ni2+. The Ni0.1Ce0.9O2-x NPs exhibit enhanced reducibility in H2 as compared to conventional ceria-supported Ni particles, while in O2 the dopant nickel cations are oxidized at higher valence than the supported ones.

2.
ACS Appl Mater Interfaces ; 9(30): 25265-25277, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28683200

ABSTRACT

Understanding the surface chemistry of electrode materials under gas environments is important in order to control their performance during electrochemical and catalytic applications. This work compares the surface reactivity of Ni/YSZ and La0.75Sr0.25Cr0.9Fe0.1O3, which are commonly used types of electrodes in solid oxide electrochemical devices. In situ synchrotron-based near-ambient pressure photoemission and absorption spectroscopy experiments, assisted by theoretical spectral simulations and combined with microscopy and electrochemical measurements, are used to monitor the effect of the gas atmosphere on the chemical state, the morphology, and the electrical conductivity of the electrodes. It is shown that the surface of both electrode types readjusts fast to the reactive gas atmosphere and their surface composition is notably modified. In the case of Ni/YSZ, this is followed by evident changes in the oxidation state of nickel, while for La0.75Sr0.25Cr0.9Fe0.1O3, a fine adjustment of the Cr valence and strong Sr segregation is observed. An important difference between the two electrodes is their capacity to maintain adsorbed hydroxyl groups on their surface, which is expected to be critical for the electrocatalytic properties of the materials. The insight gained from the surface analysis may serve as a paradigm for understanding the effect of the gas environment on the electrochemical performance and the electrical conductivity of the electrodes.

3.
Chemphyschem ; 18(1): 164-170, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27792266

ABSTRACT

Nickel/doped-ceria composites are promising electrocatalysts for solid-oxide fuel and electrolysis cells. Very often steam is present in the feedstock of the cells, frequently mixed with other gases, such as hydrogen or CO2 . An increase in the steam concentration in the feed mixture is considered accountable for the electrode oxidation and the deactivation of the device. However, direct experimental evidence of the steam interaction with nickel/doped-ceria composites, with adequate surface specificity, are lacking. Herein we explore in situ the surface state of nickel/gadolinium-doped ceria (NiGDC) under O2 , H2 , and H2 O environments by using near-ambient-pressure X-ray photoelectron and absorption spectroscopies. Changes in the surface oxidation state and composition of NiGDC in response to the ambient gas are observed. It is revealed that, in the mbar pressure regime and at intermediate temperature conditions (500-700 °C), steam acts as an oxidant for nickel but has a dual oxidant/reductant function for doped ceria.

SELECTION OF CITATIONS
SEARCH DETAIL