Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(27): 6610-6621, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38924509

ABSTRACT

The effects of alkyl chain length on the crystallization kinetics and ion mobility of tetraalkylphosphonium, [P666,n][TFSI], (n = 2, 6, 8, and 12) ionic liquids were studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS) over a wide temperature range. The liquid-glass transition temperature (Tg) and ion dynamics examined over a broad T range were almost insensitive to structural modifications of the phosphonium cation. In contrast, the crystallization kinetics were strongly affected by the length of the fourth alkyl chain. Furthermore, the thermal history of the sample (cold vs melt crystallization) significantly impacted the crystallization rate. It has been found that the nature of crystallization phenomena is the same across the homologous series, while the kinetic aspect differs. Finally, electric conductivity in supercooled liquid and crystalline solid phases was measured for all samples, revealing significant ionic conductivity, largely independent of the cation structure.

2.
Rep Prog Phys ; 87(8)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38861964

ABSTRACT

Molecular Dynamics (MD) simulations of glass-forming liquids play a pivotal role in uncovering the molecular nature of the liquid vitrification process. In particular, much focus was given to elucidating the interplay between the character of intermolecular potential and molecular dynamics behaviour. This has been tried to achieve by simulating the spherical particles interacting via isotropic potential. However, when simulation and experimental data are analysed in the same way by using the density scaling approaches, serious inconsistency is revealed between them. Similar scaling exponent values are determined by analysing the relaxation times and pVT data obtained from computer simulations. In contrast, these values differ significantly when the same analysis is carried out in the case of experimental data. As discussed thoroughly herein, the coherence between results of simulation and experiment can be achieved if anisotropy of intermolecular interactions is introduced to MD simulations. In practice, it has been realized in two different ways: (1) by using the anisotropic potential of the Gay-Berne type or (2) by replacing the spherical particles with quasi-real polyatomic anisotropic molecules interacting through isotropic Lenard-Jones potential. In particular, the last strategy has the potential to be used to explore the relationship between molecular architecture and molecular dynamics behaviour. Finally, we hope that the results presented in this review will also encourage others to explore how 'anisotropy' affects remaining aspects related to liquid-glass transition, like heterogeneity, glass transition temperature, glass forming ability, etc.

3.
J Phys Chem B ; 128(20): 5109-5117, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38718191

ABSTRACT

In this study, we employed dielectric spectroscopy to investigate the effect of temperature and pressure on the ion dynamics of phosphonium ionic liquids (ILs) differing by the length of an alkyl chain, [P666,n][TFSI] (n = 2, 6, 8, 12). We found that both temperature and pressure dependence of dc-conductivity (σdc) determined for all examined ILs herein exhibit unique characteristics, unusual for aprotic ILs. Two regions differing by ion self-organization have been identified from the derivative analysis of σdc(T-1) data. On the other hand, isothermal measurements performed at elevated pressure revealed a unique concave-convex character of σdc(P) dependences, resulting in a clear minimum in the pressure behavior of activation volume. Such an inflection point characterizing the pressure dependence of σdc in [P666,n][TFSI] ILs can be considered an inherent feature of ion dynamics governed by structural self-assembly. Our results offer a unique perspective to link the ion mobility at various T-P conditions to the nanostructural organization of ionic systems.

4.
J Phys Chem B ; 128(20): 5118-5126, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38742730

ABSTRACT

A reversible, first-order transition separating two liquid phases of a single-component material is a fascinating yet poorly understood phenomenon. Here, we investigate the liquid-liquid transition (LLT) ability of two tetraalkylphosphonium ionic liquids (ILs), [P666,14]Cl and [P666,14][1,2,4-triazolide], using differential scanning calorimetry and dielectric spectroscopy. The latter technique also allowed us to study the LLT at elevated pressure. We found that cooling below 205 K transforms [P666,14]Cl and [P666,14][Trz] from one liquid state (liquid 1) to another (the self-assembled liquid 2), while the latter facilitates the charge transport decoupled from structural dynamics. In contrast to temperature, pressure was found to play an essential role in the self-organization of a liquid 2 phase, resulting in different time scales of charge transport for rapidly and slowly compressed samples. Furthermore, τσ(PLL) was found to be much shorter than τσ(TLL, P=atm), which constitutes the first example of non-isochronal behavior of charge transport at LLT. In turn, dielectric studies through the liquid-glass transition revealed the non-monotonic behavior of τσ at elevated pressure for [P666,14]Cl, while for [P666,14][Trz] τσ(Pg) was almost constant. These results highlight the diversity of liquid-liquid transition features within the class of phosphonium ionic liquids.

5.
Phys Rev E ; 109(3-1): 034608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632762

ABSTRACT

The contribution of cross- and self-correlations to the dielectric and light-scattering spectra of supercooled polar glass formers has recently become a most challenging problem. Herein, we employ dielectric spectroscopy, depolarized dynamic light scattering (DDLS), and rheology to thoroughly examine the dynamics of van der Waals liquid 1,2-Diphenylvinylene. Carbonate (DVC), which is a polar counterpart of canonical glass former ortho-Terphenyl (OTP). We show that the light-scattering data correspond well with the dielectric permittivity function over a wide T range. This pattern is very different from the peaks' separation ω_{max}^{DDLS}/ω_{max}^{BDS}=3.7 reported recently for tributyl phosphate (TBP), despite the same dielectric characteristics of these two glass formers (ß_{KWW}=0.75, Δɛ=20 for both TBP and DVC; KWW stands for Kohlrausch-Williams-Watts). This indicates different influence of orientational correlations in both methods for these two systems. We also show the results of the computer simulations of the model, polar molecules, which clearly indicate that the contribution of the cross-term to the correlation function probed in the DDLS experiment can be significant.

6.
J Chem Phys ; 158(14): 144503, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37061492

ABSTRACT

In this article, we unravel the problem of interpreting the density scaling exponent for the polyatomic molecules representing the real van der Waals liquids. Our studies show that the density scaling exponent is a weighted average of the exponents of the repulsive terms of all interatomic interactions that occur between molecules, where the potential energy of a given interaction represents its weight. It implies that potential energy is a key quantity required to calculate the density scaling exponent value for real molecules. Finally, we use the well-known method for potential energy estimation and show that the density scaling exponent could be successfully predicted from the liquid structure for fair representatives of the real systems.

7.
Sci Rep ; 13(1): 3040, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36810358

ABSTRACT

Although the first-order liquid-liquid phase transition (LLT) has been reported to exist in various systems (i.e., phosphorus, silicon, water, triphenyl phosphite, etc.), it is still one of the most challenging problems in the field of physical science. Recently, we found that this phenomenon occurs in the family of trihexyl(tetradecyl)phosphonium [P666,14]+ based ionic liquids (ILs) with different anions (Wojnarowska et al in Nat Commun 13:1342, 2022). To understand the molecular structure-property relationships governing LLT, herein, we examine ion dynamics of two other quaternary phosphonium ILs containing long alkyl chains in cation and anion. We found that IL with the anion containing branched -O-(CH2)5-CH3 side chains does not reveal any signs of LLT, while IL with shorter alkyl chains in the anion brings a hidden LLT, i.e., it overlaps with the liquid-glass transition. Ambient pressure dielectric and viscosity measurements revealed a peculiar behavior of ion dynamics near Tg for IL with hidden LLT. Moreover, high-pressure studies have shown that IL with hidden LLT has relatively strong pressure sensitivity compared to the one without first-order phase transition. At the same time, the former exposes the inflection point indicating the concave-convex character of logτσ(P) dependences.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121235, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35429862

ABSTRACT

In this paper, the steric hindrance effect related to the presence of either a cyclic or aromatic ring on the self-association process in the series of monohydroxy alcohols (MAs), from cyclohexanemethanol to 4-cyclohexyl-1-butanol and from benzyl alcohol to 4-phenyl-1-butanol, was studied using X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, Broadband Dielectric Spectroscopy (BDS) and the Pendant Drop (PD) methods. Based on FTIR results, it was shown that phenyl alcohol (PhA) and cyclohexyl alcohol (CA) derivatives reveal substantial differences in the association degree, the activation energy of dissociation, and the homogeneity of supramolecular nanoassociates suggesting that the phenyl ring exerts a stronger steric impact on the self-assembling of molecules than cyclohexyl one. Additionally, XRD data revealed that phenyl moiety introduces more heterogeneity in the organization of molecules compared to the cyclic one. The changes in the self-association process of alcohols were also reflected in differences in the molecular dynamics of the H-bonded aggregates, as well as in the Kirkwood factor, defining the long-range correlation between dipoles, which were slightly higher for CAs with respect to those determined for PhAs. Unexpectedly it was also found that the surface layers of PhAs were more organized than those formed by CAs. Thus, these findings provided insight into the impact of aromaticity on the self-assembly process, H-bonding pattern, supramolecular structure, and intermolecular dynamics of the studied alcohols.

9.
Sci Rep ; 11(1): 22142, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34772980

ABSTRACT

The studies of molecular dynamics in the vicinity of liquid-glass transition are an essential part of condensed matter physics. Various experimental techniques are usually applied to understand different aspects of molecular motions, i.e., nuclear magnetic resonance (NMR), photon correlation spectroscopy (PCS), mechanical shear relaxation (MR), and dielectric spectroscopy (DS). Universal behavior of molecular dynamics, reflected in the invariant distribution of relaxation times for different polar and weekly polar glass-formers, has been recently found when probed by NMR, PCS, and MR techniques. On the other hand, the narrow dielectric permittivity function ε*(f) of polar materials has been rationalized by postulating that it is a superposition of a Debye-like peak and a broader structural relaxation found in NMR, PCS, and MR. Herein, we show that dielectric permittivity representation ε*(f) reveals details of molecular motions being undetectable in the other experimental methods. Herein we propose a way to resolve this problem. First, we point out an unresolved Johari-Goldstein (JG) ß-relaxation is present nearby the α-relaxation in these polar glass-formers. The dielectric relaxation strength of the JG ß-relaxation is sufficiently weak compared to the α-relaxation so that the narrow dielectric frequency dispersion faithfully represents the dynamic heterogeneity and cooperativity of the α-relaxation. However, when the other techniques are used to probe the same polar glass-former, there is reduction of relaxation strength of α-relaxation relative to that of the JG ß relaxation as well as their separation. Consequently the α relaxation appears broader in frequency dispersion when observed by PCS, NMR and MR instead of DS. The explanation is supported by showing that the quasi-universal broadened α relaxation in PCS, NMR and MR is captured by the electric modulus M*(f) = 1/ε*(f) representation of the dielectric measurements of polar and weakly polar glass-formers, and also M*(f) compares favorably with the mechanical shear modulus data G*(f).

10.
Phys Chem Chem Phys ; 23(41): 23796-23807, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34643631

ABSTRACT

In this work, we examined the effect of the length of alkyl chain attached to the benzene ring on the self-assembling phenomena for a series of phenyl alcohol (PhA) derivatives, from phenylmethanol (benzyl alcohol) to 7-phenyl-1-heptanol, by means of X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, and Broadband Dielectric Spectroscopy (BDS) methods. XRD data in the reciprocal and real spaces showed a gradual increase in the local order with the elongation of the alkyl chain. However, the position and full width at half maximum of the main diffraction peak exhibited a non-systematic behavior. To better understand this fact, PhAs were subjected to FTIR spectroscopic studies. These investigations revealed that the association degree and the activation energy of dissociation increase as the alkyl chain length grows. On the other hand, BDS data showed a non-monotonic variation in the Kirkwood correlation factor with increasing length of the alkyl chain, indicating a competition between interactions of the non-polar and polar parts of the molecules in the studied PhAs. Finally, it was also found that the molar surface entropy for PhAs increases with the number of methylene groups, approaching values reported for alkanes, which indicates suppression of the surface order for PhAs with a long alkyl chain. This variability of the various parameters as a function of the length of the side chain shows that the interplay between soft interactions has a strong impact on the local structure and intra and intermolecular dynamics of the studied PhAs.

11.
Phys Rev E ; 104(3-1): 034702, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654189

ABSTRACT

Itraconazole (ITZ) is a thermotropic liquid crystal that exhibits isotropic, nematic, and smectic phases on cooling towards the glass transition upon melting. Over the years, new aspects regarding the liquid-crystalline ordering of this antifungal drug were systematically revealed. It has been shown recently that the temperature range of individual mesophases in ITZ can be modified by adding a small amount of glycerol (GLY). Moreover, above the critical concentration of 5% w/w, a smectic to nematic transition can be avoided. Here we go one step further, and we used broadband dielectric spectroscopy to investigate the new phase behavior of the ITZ-GLY mixture (5% w/w). To confirm the phase transformations of the ITZ-GLY mixture, differential scanning calorimetry was also employed. The analysis of molecular dynamics of the ITZ-GLY mixture in the glassy and isotropic phases revealed features similar to those observed for neat ITZ. Two relaxation processes were identified in the smectic-A phase, with similar temperature dependence, most likely related to the fast rotations around the long axis of a molecule. Additionally, the derivative analysis revealed another low-frequency process hidden under DC conductivity ascribed to the slow rotations about a short axis. We will show that the differences in the molecular organization in the smectic-A and isotropic phases leave a clear fingerprint on the temperature behavior of relaxation times and other dielectric parameters, such as DC conductivity and dielectric strength, for which a pretransition effect has been detected.

12.
Sci Rep ; 11(1): 15816, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34349137

ABSTRACT

We examined a series of structurally related glass-forming liquids in which a phenothiazine-based tricyclic core (PTZ) was modified by attaching n-alkyl chains of different lengths (n = 4, 8, 10). We systematically disentangled the impact of chemical structure modification on the intermolecular organization and molecular dynamics probed by broadband dielectric spectroscopy (BDS). X-ray diffraction (XRD) patterns evidenced that all PTZ-derivatives are not 'ordinary' liquids and form nanoscale clusters. The chain length has a decisive impact on properties, exerting a plasticizing effect on the dynamics. Its elongation decreases glass transition temperature with slight impact on fragility. The increase in the medium-range order was manifested as a broadening of the dielectric loss peak reflected in the lower value of stretching parameter ßKWW. A disagreement with the behavior observed for non-associating liquids was found as a deviation from the anti-correlation between the value of ßKWW and the relaxation strength of the α-process. Besides, to explain the broadening of loss peak in PTZ with the longest (decyl) chain a slow Debye process was postulated. In contrast, the sample with the shortest alkyl chain and a less complex structure with predominant supramolecular assembly through π-π stacking exhibits no clear Debye-mode fingerprints. The possible reasons are also discussed.

13.
J Phys Chem B ; 125(11): 2960-2967, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33691402

ABSTRACT

Herein, we investigated the molecular dynamics as well as intramolecular interactions in two primary monohydroxy alcohols (MA), 2-ethyl-1-hexanol (2EHOH) and n-butanol (nBOH), by means of broad-band dielectric (BDS) and Fourier transform infrared (FTIR) spectroscopy. The modeling data obtained from dielectric studies within the Rubinstein approach [ Macromolecules 2013, 46, 7525-7541] originally developed to describe the dynamical properties of self-assembling macromolecules allowed us to calculate the energy barrier (Ea) of dissociation from the temperature dependences of relaxation times of Debye and structural processes. We found Ea ∼ 19.4 ± 0.8 and 5.3 ± 0.4 kJ/mol for the former and latter systems, respectively. On the other hand, FTIR data analyzed within the van't Hoff relationship yielded the energy barriers for dissociation Ea ∼ 20.3 ± 2.1 and 12.4 ± 1.6 kJ/mol for 2EHOH and nBOH, respectively. Hence, there was almost a perfect agreement between the values of Ea estimated from dielectric and FTIR studies for the 2EHOH, while some notable discrepancy was noted for the second alcohol. A quite significant difference in the activation barrier of dissociation indicates that there are probably supramolecular clusters of varying geometry or a ring-chain-like equilibrium is strongly affected in both alcohols. Nevertheless, our analysis showed that the association/dissociation processes undergoing within nanoassociates are one of the main factors underlying the molecular origin of the Debye process, supporting the transient chain model.

14.
J Chem Phys ; 154(4): 044502, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33514081

ABSTRACT

The Adam-Gibbs (AG) model, linking thermodynamics with molecular dynamics of glass-forming liquids, plays a crucial role in the studies of the glass transition phenomenon. We employ this approach to investigate the relationship between ion dynamics and thermodynamics in three imidazolium-based ionic liquids in the current work. We show that the AG relation, -log10σdc ∝ (TSc)-1 (where σdc, T, and Sc denote the dc-conductivity, absolute temperature, and configurational entropy, respectively), does not work when the whole supercooled liquid state is considered. Meanwhile, a linear relationship between -log10σdc and (TSe)-1 (where Se denotes the excess entropy) was observed in the entire supercooled range. On the other hand, the generalized AG model log10σdc ∝ (TSc α)-1 with an additional free parameter α successfully describes the relation between σdc and Sc. The determined α values being less than unity indicate that the configurational entropy is insufficient to govern the ion dynamics. Meanwhile, we found a systematical decrease in α with the elongation of the alkyl chain attached to the imidazolium ring.

15.
J Phys Chem Lett ; 12(1): 245-249, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33331778

ABSTRACT

In this Letter we report significant differences in the dielectric behavior of four nonpolymeric and sizable glass-forming molecules with related chemical structures. They belong to the recently constituted class of sizable glass-formers [Jedrzejowska et al. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2020, 101, 010603], for which the pattern of change in dielectric properties with structure has not yet been fully discovered. In the present study we tackle the fundamental problem of the structure-dynamics relationship. It was made possible by judicious choice of investigated systems with the values of dipole moments purposely kept at about the same level, and the only difference is the structure of the terminal substituents applied. The remarkable effect revealed by broadband dielectric spectroscopy is a large difference in the frequency dispersion of the α-relaxation for the systems studied. This interesting finding can be rationalized by the results of X-ray diffraction, clearly indicating the dissimilarities in the local intermolecular structure.

16.
J Phys Chem B ; 124(23): 4821-4834, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32396358

ABSTRACT

Broadband dielectric spectroscopy (BDS) has been used to study the molecular dynamics and aging process in neat probucol (PRO) as well as its binary mixtures with selected acetylated saccharides. In particular, we applied the Casalini and Roland approach to determine structural relaxation times in the glassy state of the examined systems (so-called isostructural times, τiso). Next, using the calculated τiso, primitive relaxation times of the coupling model were obtained and compared to the experimental secondary ß (Johari-Goldstein (JG) type) relaxation times. Interestingly, it turned out that there is a correlation between the ß-JG and the structural (α)-relaxation processes below the glass transition temperature (T < Tg) in each investigated sample. This is a new observation compared to previous studies demonstrating that such a relationship exists only in the supercooled liquid state of neat PRO. Moreover, it was revealed that the stretching parameters obtained from the aging procedure are very close to the ones determined by fitting the dielectric data above the Tg with the use of the Kohlrausch-Williams-Watts function, indicating that the aging process is governed by the α-relaxation. Complementary Fourier transform infrared and X-ray diffraction measurements allowed us to find a possible reason for these findings. It was demonstrated that although there are very weak intermolecular interactions between PRO and modified saccharides, the intra- and intermolecular structure of PRO is practically unaffected by the presence of modified saccharides.

17.
Phys Rev E ; 101(3-1): 032606, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289964

ABSTRACT

Segmental dynamics is considered as a major factor governing ionic conductivity of polymerized ionic liquids (PILs), envisioned as potential electrolytes in fuel cells and batteries. Our dielectric studies performed in T-P thermodynamic space on ionene, composed of the positively charged polymer backbone and freely moving anions, indicate that other relaxation modes, completely ignored so far, can affect the charge transport in PILs as well. We found that fast mobility manifested by a secondary ß process promotes segmental dynamics and thereby increases ionic conductivity making the studied material a first coupled PIL of superionic properties. The molecular mechanism underlying such a ß process has been identified as Johari-Goldstein relaxation giving experimental proof that fast secondary relaxations of intermolecular origin exist also in PILs and thereby reveal a universal character.

18.
Phys Rev E ; 101(1-1): 012613, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32069552

ABSTRACT

In this paper, based on the molecular dynamics simulations of quasireal model systems, we propose a method for determination of the effective intermolecular potential for real materials. We show that in contrast to the simple liquids, the effective intermolecular potential for the studied systems depends on the thermodynamic conditions. Nevertheless, the previously established relationship for simple liquids between the exponent of the inverse power law approximation of intermolecular potential and the density-scaling exponent is still preserved when small enough intermolecular distances are considered. However, our studies show that molecules approach each other at these very short distances relatively rarely. Consequently, only sparse interactions between extremely close molecules determine the value of the scaling exponent and then strongly influence the connection between dynamics and thermodynamics of the whole system.

19.
Phys Rev E ; 101(1-1): 010603, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32069682

ABSTRACT

In this Rapid Communication we report the unusual dynamics of planar, rigid, and anisotropy glass-forming molecules of unusually large size by dielectric spectroscopy by using two examples. The size of the molecules is much larger than the dipolar moiety located at the end of the longer axis of each molecule. The observed dynamics deviates strongly from the anticorrelation between ß_{KWW} (fractional exponent of the Kohlrausch-Williams-Watts function) and dielectric strength, Δɛ(T_{g}), established generally for small van der Waals molecular glass formers. Moreover, the dynamics of the two large molecules differ greatly, albeit the difference is the dipole moment being orthogonal or parallel to the longer axis of the molecules. The drastic variation in dielectric response of the two materials coming from different portions of the structural α-relaxation spectrum is probed by the dipole. Thus, the new behavior opens up a new research area of the dynamics and thermodynamics of nonpolymeric sizable molecules, the dielectric response of which can be varied by the design of the dipole moiety.

SELECTION OF CITATIONS
SEARCH DETAIL
...