Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0300539, 2024.
Article in English | MEDLINE | ID: mdl-38574058

ABSTRACT

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.


Subject(s)
Actins , Axons , Axons/metabolism , Nocodazole/pharmacology , Actins/metabolism , Leucine Zippers , Nerve Regeneration/physiology , Cytoskeleton/metabolism , Homeostasis , MAP Kinase Kinase Kinases/genetics
2.
bioRxiv ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37873434

ABSTRACT

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that a) low dose nocodazole treatment activates DLK signaling and b) DLK signaling mitigates the microtubule damage caused by the cytoskeletal perturbation. We also perform RNA-seq to discover a DLK-dependent transcriptional signature. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes and promoting actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.

3.
PLoS Genet ; 18(6): e1010246, 2022 06.
Article in English | MEDLINE | ID: mdl-35737728

ABSTRACT

SARM1 is the founding member of the TIR-domain family of NAD+ hydrolases and the central executioner of pathological axon degeneration. SARM1-dependent degeneration requires NAD+ hydrolysis. Prior to the discovery that SARM1 is an enzyme, SARM1 was studied as a TIR-domain adaptor protein with non-degenerative signaling roles in innate immunity and invertebrate neurodevelopment, including at the Drosophila neuromuscular junction (NMJ). Here we explore whether the NADase activity of SARM1 also contributes to developmental signaling. We developed transgenic Drosophila lines that express SARM1 variants with normal, deficient, and enhanced NADase activity and tested their function in NMJ development. We find that NMJ overgrowth scales with the amount of NADase activity, suggesting an instructive role for NAD+ hydrolysis in this developmental signaling pathway. While degenerative and developmental SARM1 signaling share a requirement for NAD+ hydrolysis, we demonstrate that these signals use distinct upstream and downstream mechanisms. These results identify SARM1-dependent NAD+ hydrolysis as a heretofore unappreciated component of developmental signaling. SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions.


Subject(s)
Armadillo Domain Proteins , NAD , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , NAD/genetics , NAD+ Nucleosidase/genetics , NAD+ Nucleosidase/metabolism
4.
J Biol Chem ; 293(30): 11850-11866, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29891550

ABSTRACT

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the huntingtin protein (Htt). Transcriptional dysregulation is an early event in the course of HD progression and is thought to contribute to disease pathogenesis, but how mutant Htt causes transcriptional alterations and subsequent cell death in neurons is not well understood. RNA-Seq analysis revealed that expression of a mutant Htt fragment in primary cortical neurons leads to robust gene expression changes before neuronal death. Basic helix-loop-helix transcription factor Twist1, which is essential for embryogenesis and is normally expressed at low levels in mature neurons, was substantially up-regulated in mutant Htt-expressing neurons in culture and in the brains of HD mouse models. Knockdown of Twist1 by RNAi in mutant Htt-expressing primary cortical neurons reversed the altered expression of a subset of genes involved in neuronal function and, importantly, abrogated neurotoxicity. Using brain-derived neurotrophic factor (Bdnf), which is known to be involved in HD pathogenesis, as a model gene, we found that Twist1 knockdown could reverse mutant Htt-induced DNA hypermethylation at the Bdnf regulatory region and reactivate Bdnf expression. Together, these results suggest that Twist1 is an important upstream mediator of mutant Htt-induced neuronal death and may in part operate through epigenetic mechanisms.


Subject(s)
Epigenesis, Genetic , Huntingtin Protein/genetics , Huntington Disease/genetics , Twist-Related Protein 1/genetics , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , DNA Methylation , Female , Gene Regulatory Networks , Humans , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Male , Mice , Mutation , Neurons/metabolism , Transcriptional Activation , Twist-Related Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...