Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 15: 1455899, 2024.
Article in English | MEDLINE | ID: mdl-39308854

ABSTRACT

Background: Severe burns can lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS) due to inflammation-immunity dysregulation. This study aimed to identify key immune-related molecules and potential drugs for immune regulation in severe burn treatment. Method: Microarray datasets GSE77791 and GSE37069 were analyzed to identify immune-related differentially expressed genes (DEGs), enriched pathways and prognosis-related genes. The DGIdb database was used to identify potentially clinically relevant small molecular drugs for hub DEGs. Hub DEGs were validated by total RNA from clinical blood samples through qPCR. The efficacy of drug candidates was tested in a severe burn mouse model. Pathologic staining was used to observe organ damage. Enzyme Linked Immunosorbent Assay (ELISA) was used to detect the serum IL-1b, IL-6, TNF-a and MCP-1 contents. Activation of the NF-κB inflammatory pathway was detected by western blotting. Transcriptome sequencing was used to observe inflammatory-immune responses in the lung. Results: A total of 113 immune-related DEGs were identified, and the presence of immune overactivation was confirmed in severe burns. S100A8 was not only significantly upregulated and identified to be prognosis-related among the hub DEGs but also exhibited an increasing trend in clinical blood samples. Methotrexate, which targets S100A8, as predicted by the DGIdb, significantly reduces transcription level of S100A8 and inflammatory cytokine content in blood, organ damage (lungs, liver, spleen, and kidneys) and mortality in severely burned mice when combined with fluid resuscitation. The inflammatory-immune response was suppressed in the lungs. Conclusion: S100A8 with high transcription level in blood is a potential biomarker for poor severe burn prognosis. It suggested that methotrexate has a potential application in severe burn immunotherapy. Besides, it should be emphasized that fluid resuscitation is necessary for the function of methotrexate.


Subject(s)
Burns , Burns/immunology , Animals , Mice , Humans , Prognosis , Male , Gene Expression Profiling , Disease Models, Animal , Methotrexate/therapeutic use , Cytokines/metabolism , Cytokines/blood , Computational Biology/methods , Transcriptome , Mice, Inbred C57BL , Female , Biomarkers
2.
Cell Prolif ; 56(11): e13493, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37128180

ABSTRACT

Cell migration and proliferation are conducive to wound healing; however, regulating cell proliferation remains challenging, and excessive proliferation is an important cause of scar hyperplasia. Here, we aimed to explore how a subvacuum environment promotes wound epithelisation without affecting scar hyperplasia. Human immortalized keratinocyte cells and human skin fibroblasts were cultured under subvacuum conditions (1/10 atmospheric pressure), and changes in cell proliferation and migration, target protein content, calcium influx, and cytoskeleton and membrane fluidity were observed. Mechanical calcium (Ca2+ ) channel blockers were used to prevent Ca2+ influx for reverse validation. A rat wound model was used to elucidate the mechanism of the subvacuum dressing in promoting healing. The subvacuum environment was observed to promote cell migration without affecting cell proliferation; intracellular Ca2+ concentrations and PI3K, p-PI3K, AKT1, p-AKT 1 levels increased significantly. The cytoskeleton was depolymerized, pseudopodia were reduced or absent, and membrane fluidity increased. The use of Ca2+ channel blockers weakened or eliminated these changes. Animal experiments confirmed these phenomena and demonstrated that subvacuum dressings can effectively promote wound epithelisation. Our study demonstrates that the use of subvacuum dressings can enhance cell migration without affecting cell proliferation, promote wound healing, and decrease the probability of scar hyperplasia.


Subject(s)
Cicatrix, Hypertrophic , Humans , Rats , Animals , Cicatrix, Hypertrophic/metabolism , Hyperplasia/metabolism , Calcium/metabolism , Wound Healing , Cell Movement , Fibroblasts/metabolism , Cell Proliferation , Phosphatidylinositol 3-Kinases/metabolism
3.
PLoS One ; 13(3): e0194298, 2018.
Article in English | MEDLINE | ID: mdl-29529067

ABSTRACT

Rapid repair of vascular injury is an important prognostic factor for electrical burns. This repair is achieved mainly via stromal cell-derived factor (SDF)-1α promoting the mobilization, chemotaxis, homing, and targeted differentiation of bone marrow mesenchymal stem cells (BMSCs) into endothelial cells. Forming a concentration gradient from the site of local damage in the circulation is essential to the role of SDF-1α. In a previous study, we developed reactive oxygen species (ROS)-sensitive PPADT nanoparticles containing SDF-1α that could degrade in response to high concentration of ROS in tissue lesions, achieving the goal of targeted SDF-1α release. In the current study, a rat vascular injury model of electrical burns was used to evaluate the effects of targeted release of SDF-1α using PPADT nanoparticles on the chemotaxis of BMSCs and the repair of vascular injury. Continuous exposure to 220 V for 6 s could damage rat vascular endothelial cells, strip off the inner layer, significantly elevate the local level of ROS, and decrease the level of SDF-1α. After injection of Cy5-labeled SDF-1α-PPADT nanoparticles, the distribution of Cy5 fluorescence suggested that SDF-1α was distributed primarily at the injury site, and the local SDF-1α levels increased significantly. Seven days after injury with nanoparticles injection, aggregation of exogenous green fluorescent protein-labeled BMSCs at the injury site was observed. Ten days after injury, the endothelial cell arrangement was better organized and continuous, with relatively intact vascular morphology and more blood vessels. These results showed that SDF-1α-PPADT nanoparticles targeted the SDF-1α release at the site of injury, directing BMSC chemotaxis and homing, thereby promoting vascular repair in response to electrical burns.


Subject(s)
Burns, Electric/metabolism , Burns, Electric/pathology , Chemokine CXCL12/biosynthesis , Chemotaxis , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Nanoparticles , Reactive Oxygen Species/metabolism , Animals , Biomarkers , Biopsy , Burns, Electric/drug therapy , Disease Models, Animal , Male , Mice , Rats , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL