Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21758, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303895

ABSTRACT

This study aimed to develop biodegradable calcium alginate microcarriers with uniform particle size and spherical integrity for sustained-release targeting transarterial chemoembolization. To determine related parameters including the ratio of cross-linking volume (sodium alginate: CaCl2), concentrations of sodium alginate and CaCl2 solutions, collection distance, flow rate, stirring speed, syringe needle diameter and hardening time to fabricate the microcarriers, the Taguchi method was applied. Using different conditions, a total of 18 groups were prepared. The average size of microspheres from different groups was estimated as ~ 2 mm (range 1.1 to 1.6 mm). Signal-to-noise ratio analysis showed the optimal spherical integrity (F1) achieved when the above parameters were designed as 0.1, 2.5 wt%, 6 wt%, 8 cm, 30 mL/h, 150 rpm, 0.25 mm and 2 h, respectively. The best (F1), middle (F2) and worst (F3) groups were used for further experiments. Fourier-transform infrared spectroscopy spectrum showed that F1, F2 and F3 conformations were distinct from original sodium alginate. Drug-loaded calcium alginate microcarriers demonstrated rougher surfaces compared to microspheres without drug under transmission electron microscopy. Compared to pH 7.4, swelling rates in PBS were decreased at pH 6.5. Encapsulation and loaded efficiencies of the Dox-loaded microcarriers were estimated as ~ 40.617% and ~ 3.517%. In vitro experiments indicated that the F1 Dox-loaded microcarriers provide a well sustained-release efficacy for about two weeks at 37 °C in PBS. Treatments of calcium alginate microcarriers without the Dox in two distinct hepatocellular carcinoma-derived cell lines, Huh-7 and Hep-3B, indicated that these microcarriers were non-toxic. The Dox-loaded microcarriers displayed sustained-release capacity and reduced cell viabilities to ~ 30% in both cell lines on Day 12.


Subject(s)
Alginates , Capsules , Chemoembolization, Therapeutic/methods , Doxorubicin/administration & dosage , Drug Carriers , Microspheres , Alginates/pharmacology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Cell Survival/drug effects , Delayed-Action Preparations , Doxorubicin/pharmacology , Drug Carriers/pharmacology , Humans , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Particle Size
2.
Sci Rep ; 6: 27090, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27271352

ABSTRACT

Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

3.
Sci Rep ; 4: 6334, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25284688

ABSTRACT

Ion irradiation has been observed to induce a macroscopic flattening and in-plane shrinkage of graphene sheets without a complete loss of crystallinity. Electron diffraction studies performed during simultaneous in-situ ion irradiation have allowed identification of the fluence at which the graphene sheet loses long-range order. This approach has facilitated complementary ex-situ investigations, allowing the first atomic resolution scanning transmission electron microscopy images of ion-irradiation induced graphene defect structures together with quantitative analysis of defect densities using Raman spectroscopy.

4.
Opt Express ; 22(12): 14411-24, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24977538

ABSTRACT

In the exposure process of photolithography, a free-form lens is designed and fabricated for UV-LED (Ultraviolet Light-Emitting Diode). Thin film metallic glasses (TFMG) are adopted as UV reflection layers to enhance the irradiance and uniformity. The Polydimethylsiloxane (PDMS) with high transmittance is used as the lens material. The 3-D fast printing is attempted to make the mold of the lens. The results show that the average irradiance can be enhanced by 6.5~6.7%, and high uniformity of 85~86% can be obtained. Exposure on commercial thick photoresist using this UV-LED system shows 3~5% dimensional deviation, lower than the 6~8% deviation for commercial mercury lamp system. This current system shows promising potential to replace the conventional mercury exposure systems.

5.
Water Environ Res ; 82(1): 27-33, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20112535

ABSTRACT

This study investigated organic matter and nitrogen reduction and transformation mechanisms within a field-scale hybrid natural purification system. The system included an oxidation pond, two serial surface-flow wetlands with a cascade in between, and a subsurface-flow wetland receiving secondary treated dormitory sewage. The average biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal was 81 and 48%, respectively. Microbial degradation was the primary process contributing to organic reduction. Total Kjeldahl nitrogen (TKN) and ammonium decreased from 7.1 to 3.9 and 5.58 to 3.25 mg/L, respectively, within the surface-flow wetlands. The results indicated that nitrification occurred within the aerobic compartments. The nitrate levels continued to decrease from 1.26 to 1.07 mg/L, indicating nitrate reduction occurred in the surface-flow wetland. Total nitrogen decreased from 8.61 to 5.12 mg/L, equivalent to a 41% reduction, within the surface-flow wetlands. Results revealed that denitrification might concurrently occur in the compartment of surface-flow wetland. Total nitrogen continued to decrease from 5.12 to 3.99 mg/L within the anoxic subsurface-flow wetlands through denitrification transformation. The significant total nitrogen reduction observed was 65%. The predominant reduction of total nitrogen might take place within the sediment of surface flow and the subsurface-flow wetland where denitrification occurred. The microbial identification results also indicated that nitrification/denitrification might occur concurrently within the sediments of surface-flow wetlands. The results of this study show that hybrid wetland systems are a viable option for organic matter and nitrogen transformation and removal in tropical regions where tertiary wastewater systems are too costly or unable to operate. Treated water from these systems can comply with local surface water criteria rendering water for reuse and groundwater recharge.


Subject(s)
Bacteria/classification , Nitrogen/chemistry , Organic Chemicals/chemistry , Water Purification/methods , Wetlands , Bacteria/metabolism , Biodegradation, Environmental , Nitrogen/metabolism , Organic Chemicals/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...