Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39166915

ABSTRACT

The scarcity of cryogenic thermometers often stems from their high cost and lengthy lead times for calibration. Establishing an in-lab temperature calibration system is necessary to quickly make use of uncalibrated sensors or self-made sensors. This paper introduces a straightforward and high-accuracy thermometer calibration system. By employing copper screws as thermal links between the sensor platform and the cryogen-free refrigerator, temperature oscillation on the sensor platform is suppressed to a few millikelvins. In addition, this paper presents a data processing model based on clustering algorithms. These algorithms sort and group data based on distance, which is similar to human visual judgment of data. This paper discusses the parameter optimization process of the clustering algorithm to interpret the automated data process. The cryogenic temperature sensors calibrated by this system exhibited high accuracy, with relative errors of less than 1% compared to standard thermometers. Moreover, automatically processing calibration data from two uncalibrated thermometers takes just over 10 min, highlighting the effectiveness of this calibration system.

2.
Inorg Chem ; 63(36): 16667-16675, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39186801

ABSTRACT

Triangular lattice (TL) materials are a rich playground for investigating exotic quantum spin states and related applications in quantum computing and quantum information. Millimeter-level single crystals of REBO3 (RE = Tb-Yb) with a nearly perfect RE-based TL have been successfully grown via a high-temperature flux method and structurally characterized via single-crystal X-ray diffraction. These 113-type materials crystallize in a monoclinic crystal system with a C2/c space group. Anisotropic magnetism and dominant antiferromagnetic interactions are found for the above materials based on DC magnetic susceptibility measurements. The comprehensive low-temperature specific heat data of REBO3 (RE = Tb-Tm) are characterized on single crystals for the first time, which exhibit diverse magnetic behaviors. Specifically, two weak-field-induced transitions could be found in the case of DyBO3 based on the specific heat measurements. Our results suggest that REBO3 (RE = Tb-Yb) is a TL magnetic system for investigating potential quantum magnetism.

3.
Appl Opt ; 62(19): 5294-5300, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37707234

ABSTRACT

We present a high-absorption optical stack design for aluminum (Al) kinetic inductance detectors (KIDs). Aluminum can be easily processed in micro-fabrication and is the most conventional superconducting material for KIDs. However, it is challenging to achieve high absorption in the Al absorber because of its high reflection at optical wavelengths. By embedding the thin Al film between an anti-reflection (AR) coating layer and a dielectric-based distributed Bragg reflector, we show that close-to-unity absorption can be achieved around a single wavelength (e.g., ≈98.9% at 1518 nm). The reflection and transmission measurements agree well with the calculation based on the transmission matrix model. We also show our preliminary results of absorption ≥70% in a broader wavelength range (≈230n m) with multilayer AR coatings. The absorber design in a lumped-element KID is discussed. Our work paves the way to high-efficiency photon-counting and energy-resolving Al-based KIDs in the optical to NIR range.

6.
Rev Sci Instrum ; 89(10): 104901, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399933

ABSTRACT

Single-pressure refractive-index gas thermometry (SPRIGT) is a new type primary thermometry jointly developed by TIPC of CAS in China and LNE-Cnam in France. To realize a competitive uncertainty of 0.25 mK for the thermodynamic temperature measurement, a cryogen-free cryostat with high-stability better than 0.2 mK should be designed. This paper presented the first experimental results of temperature control for this cryostat. To realize this objective, multi-layer radiation shields combined with a thermal-resistance method were used to isolate the thermal-noise from surroundings. Besides, a new temperature control method based on a gas-type heat switch and proportional-integral-derivative control method was proposed, which was applicable to different temperature ranges by changing the working modes of the heat switch. After optimizing, the ultra-high precision temperature control in the range of 5-25 K has been fully realized, which was the temperature instability (with standard deviation) of 0.021 mK at 5.0 K, 0.05 mK at 5.7 K, 0.042 mK at 7.4 K, 0.029 mK at 14.3 K, and 0.022 mK at 25 K with the sampling time of 0.8 s. This was almost the best reporting result in the world and showed its great potential in SPRIGT.

SELECTION OF CITATIONS
SEARCH DETAIL