Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Chemistry ; 30(32): e202400899, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38576216

ABSTRACT

An amphiphilic aza-BODIPY dye (S)-1 bearing two chiral hydrophilic side chains with S-stereogenic centers was synthesized. This dye exhibited kinetic-controlled self-assembly pathways and supramolecular chiral polymorphism properties in MeOH/H2O (9/1, v/v) mixed solvent. The (S)-1 monomers first aggregated into a kinetic controlled, off-pathway species Agg. A, which was spontaneously transformed into an on-pathway metastable aggregate (Agg. B) and subsequently into the thermodynamic Agg. C. The three aggregate polymorphs of dye (S)-1 displayed distinct optical properties and nanomorphologies. In particular, chiral J-aggregation characteristics were observed for both Agg. B and Agg. C, such as Davydov-split absorption bands (Agg. B), extremely sharp and intense J-band with large bathochromic shift (Agg. C), non-diminished fluorescence upon aggregation, as well as strong bisignated Cotton effects. Moreover, the AFM and TEM studies revealed that Agg. A had the morphology of nanoparticle while fibril or rod-like helical nanostructures with left-handedness were observed respectively for Agg. B and Agg. C. By controlling the kinetic transformation process from Agg. B to Agg. C, thin films consisting of Agg. B and Agg. C with different ratios were prepared, which displayed tunable CPL with emission maxima at 788-805 nm and g-factors between -4.2×10-2 and -5.1×10-2.

2.
Angew Chem Int Ed Engl ; 63(11): e202319875, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38225205

ABSTRACT

Achieving photothermal therapy (PTT) at ultralow laser power density is crucial for minimizing photo-damage and allowing for higher maximum permissible skin exposure. However, this requires photothermal agents to possess not just superior photothermal conversion efficiency (PCE), but also exceptional near-infrared (NIR) absorptivity. J-aggregates, exhibit a significant redshift and narrower absorption peak with a higher extinction coefficient. Nevertheless, achieving predictable J-aggregates through molecular design remains a challenge. In this study, we successfully induced desirable J-aggregation (λabs max : 968 nm, ϵ: 2.96×105  M-1 cm-1 , λem max : 972 nm, ΦFL : 6.2 %) by tuning electrostatic interactions between π-conjugated molecular planes through manipulating molecular surface electrostatic potential of aromatic ring-fused aza-BODIPY dyes. Notably, by controlling the preparation method for encapsulating dyes into F-127 polymer, we were able to selectively generate H-/J-aggregates, respectively. Furthermore, the J-aggregates exhibited two controllable morphologies: nanospheres and nanowires. Importantly, the shortwave-infrared J-aggregated nanoparticles with impressive PCE of 72.9 % effectively destroyed cancer cells and mice-tumors at an ultralow power density of 0.27 W cm-2 (915 nm). This phototherapeutic nano-platform, which generates predictable J-aggregation behavior, and can controllably form J-/H-aggregates and selectable J-aggregate morphology, is a valuable paradigm for developing photothermal agents for tumor-treatment at ultralow laser power density.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mice , Boron Compounds/therapeutic use , Neoplasms/drug therapy , Coloring Agents , Lasers , Phototherapy/methods , Cell Line, Tumor
3.
ACS Omega ; 9(1): 1001-1010, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222526

ABSTRACT

Porous carbon materials with nitrogen-coordinated transition metal active sites have been widely regarded as appealing alternatives to replace noble metal catalysts in oxygen-based electrochemical reaction activities. However, improving the electrocatalytic activity of transition-metal-based catalysts remains a challenge for widespread application in renewable devices. Herein, we use a simple one-step pyrolysis method to construct a Co nanoparticles/Co-Nx-decorated carbon framework catalyst with a near-total external surface structure and uniform dispersion nanoparticles, which displays promising catalytic activity and superior stability for oxygen reduction reactions in both alkaline and neutral electrolytes, as evidenced by the positive shift of half-wave potential by 44 and 11 mV compared to 20% Pt/C. Excellent electrochemical performance originates from highly accessible Co nanoparticles/Co-Nx active sites at the external surface structure (this is, exposing active sites). The thus-assembled liquid zinc-air battery using the synthesized electrocatalyst as the cathode material delivers a maximum power density of 178 mW cm-2 with an open circuit potential of 1.48 V and long-term discharge stability over 150 h.

4.
Molecules ; 29(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257253

ABSTRACT

A high phosphoric acid uptake and retention capacity are crucial for the high performance and stable operation of phosphoric acid/polybenzimidazole (PA/PBI)-based high-temperature proton exchange membranes. In this work, amine end-functionalized side-chain grafted PBI (AGPBI) with different grafting degrees are synthesized to enhance both the phosphoric acid uptake and the acid retention ability of the accordingly formed membranes. The optimized acid-base membrane exhibits a PA uptake of 374.4% and an anhydrous proton conductivity of 0.067 S cm-1 at 160 °C, with the remaining proton conductivity percentages of 91.0% after a 100 h stability test. The accordingly fabricated membrane electrode assembly deliver peak power densities of 0.407 and 0.638 W cm-2 under backpressure of 0 and 200 kPa, which are significantly higher than 0.305 and 0.477 W cm-2 for the phosphoric acid-doped unmodified PBI membrane under the same conditions.

5.
J Colloid Interface Sci ; 657: 870-879, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38091910

ABSTRACT

The development of efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is impending for the advancement of water-splitting. In this study, we developed a novel electrocatalyst consisting of highly dispersed Ru nanoclusters ameliorated by cobalt single atoms and N, S co-doped reduced graphene oxide (CoSARuNC@NSG). Benefitted from the optimized electronic structure of the Ru nanoclusters induced by the adjacent single atomic Co and N, S co-doped RGO support, the electrocatalyst exhibits exceptional HER performance with overpotentials of 15 mV and 74 mV for achieving a current density of 10 mA cm-2 in alkaline and acidic water. The catalyst outperforms most noble metal-based HER electrocatalysts. Furthermore, the electrolyzer assembled with CoSARuNC@NSG and RuO2 demonstrated an overall voltage of 1.56 V at 10 mA cm-2 and an excellent operational stability for over 25 h with almost no attenuation. Theoretical calculations also deduce its high HER activity demonstrated by the smaller reaction energy barrier due to the optimized electronic structure of Ru nanoclusters. This strategy involving the regulation of metal nanoparticles activity through flexible single atom and GO support could provide valuable insights into the design of high-performance and low-cost HER catalysts.

6.
Chem Commun (Camb) ; 58(55): 7662-7665, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35726543

ABSTRACT

The kinetic assembly pathways of a newly synthesized amphiphilic aza-BODIPY dye 1 were tuned by using H2O as a co-solvent in MeOH. Accordingly, the biphasic aggregation pathways resulting in kinetically-trapped and thermodynamically stable aggregates of 1 were established and the multiple cyclic seeded living supramolecular polymerization of this dye was realized.


Subject(s)
Boron Compounds , Water , Kinetics , Polymerization
7.
Polymers (Basel) ; 14(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35631832

ABSTRACT

A solid-state polymer electrolyte membrane is formed by blending poly(vinylidene fluoride-co-hexafluoropropylene) with the synthesized copolymer of poly(methyl methacrylate-co-1-vinyl-3-butyl-imidazolium bis(trifluoromethanesulfonyl)imide, in which lithium bis(trifluoromethane)sulfonimide molecules are applied as the source of lithium ions. The accordingly formed membrane that contains 14 wt.% of P(MMA-co-VBIm-TFSI), 56 wt.% of PVDF-HFP, and 30 wt.% of LiTFSI manifests the best electrochemical properties, achieving an ionic conductivity of 1.11 × 10-4 S·cm-1 at 30 °C and 4.26 × 10-4 S·cm-1 at 80 °C, a Li-ion transference number of 0.36, and a wide electrochemical stability window of 4.7 V (vs. Li/Li+). The thus-assembled all-solid-state lithium-ion battery of LiFePO4/SPE/Li delivers a discharge specific capacity of 148 mAh·g-1 in the initial charge-discharge cycle at 0.1 C under 60 °C. The capacity retention of the cell is 95.2% after 50 cycles at 0.1 C and the Coulombic efficiency remains close to 100% during the cycling process.

8.
Org Biomol Chem ; 19(27): 6108-6114, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34160530

ABSTRACT

A novel amphiphilic B,O-chelated azadipyrromethene (aza-BODIPY) dye, containing hydrophobic dodecyloxy groups and hydrophilic tetraethylene glycol (TEG) chains, was synthesized and characterized by NMR, HRMS, Vis/NIR absorption and fluorescence spectroscopy. The B,O-chelated dye 1 exhibited largely bathochromically shifted NIR absorption and fluorescence spectra in comparison with common BF2-chelated aza-BODIPY dyes. Upon gradual addition of trifluoroacetic acid (TFA) to the dye 1 solution, obvious spectral changes were observed in Vis/NIR absorption and fluorescence spectroscopy measurements. Meanwhile, the colour change of the dye 1 solution from pink to blue was noticeable by the naked eye, indicating the pH-sensitivity of dye 1. The pH-sensitivity of dye 1 under acidic conditions could be ascribed to the formation of dye species 2·H+. Furthermore, owing to the amphiphilic feature of dye 1, it self-assembled into J-type aggregates in a mixed solvent of water/DMSO (2/8, v/v). Temperature-dependent Vis/NIR spectroscopic studies revealed a cooperative aggregation process of dye 1 and a nanowire-like morphology of the nanoaggregates was observed by AFM.

9.
Exp Ther Med ; 21(2): 171, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33456538

ABSTRACT

Ectopic expression of microRNA (miRNA) in rheumatoid arthritis (RA) fibroblast-like synoviocyte (RA FLS) is associated with the development of rheumatoid arthritis. The present study aimed to evaluate the effects of miRNA-140-5p (miR-140) on the properties of RA FLSs. It was found that miR-140 expression was decreased in 33 RA patients and extracted RA FLS samples, when compared to the corresponding healthy controls. Abnormally increased miR-140 expression in RA FLSs attenuated cell proliferation and increased cell apoptosis. Additionally, reduced pro-inflammatory cytokine production was observed in RA FLSs transfected with a miR-140 precursor. Furthermore, the 3'-UTR of the signal transducer and activator of transcription (STAT) 3 gene was identified as a target of miR-140. Notably, restoration of STAT3 expression rescued the regulatory effect of miR-140 on the proliferation, apoptosis and inflammatory cytokine production of RA FLSs. Therefore, the current findings indicated that miR-140 is a crucial modulator of both proliferation and apoptosis, shedding light on the etiology behind RA FLS viability, which is modulated by an interplay between miR-140 and STAT3 in the context of RA.

10.
Chem Commun (Camb) ; 56(80): 12069-12072, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32909019

ABSTRACT

A BODIPY dye functionalized with uracil-ethynyl groups at the 2,6-positions supramolecularly polymerized into J-aggregates directed by intermolecular H-bonds and featured intense absorption and resonant fluorescence. The alignment of J-aggregated chromophores in a thin film was achieved by a rubbing method and polarized photoluminescence with a dichroic ratio up to 14.3 was obtained.

11.
Biomolecules ; 10(9)2020 08 20.
Article in English | MEDLINE | ID: mdl-32825264

ABSTRACT

An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE).


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Neural Networks, Computer , Databases, Genetic , Humans
12.
Org Biomol Chem ; 18(19): 3754-3760, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32368777

ABSTRACT

Five new dimethylmethylene-bridged triphenylamine (DTPA) derivatives 4a-e bearing peripheral cross-linkable vinyl and trifluorovinyl groups were synthesized. The chemical structure of these compounds was characterized by 1H NMR, 13C NMR and HRMS. Their optical properties were studied by UV/Vis spectroscopy and fluorescence spectroscopy. Based on these studies, blue-coloured fluorescence and high fluorescence quantum yields were obtained for 4a-e. The electrochemical properties of these compounds were studied by cyclic voltammetry and the results were further elucidated by DFT calculations. Furthermore, the thermotropic properties of the new DTPAs were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Compounds 4a-d exhibit high thermal stability and thermal cross-linkable properties. These results provide an effective strategy for the design and synthesis of thermally stable and cross-linkable DTPA derivatives with tunable optical and electrochemical properties.

13.
ACS Nano ; 14(5): 5780-5787, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32352750

ABSTRACT

The design and synthesis of hollow-nanostructured transition metal oxide-based anodes is of great importance for long-term operation of lithium ion batteries. Herein, we report a two-step calcination strategy to fabricate hollow Co3O4 nanoparticles embedded in a N,S-co-doped reduced graphene oxide framework. In the first step, core-shell-like Co@Co3O4 embedded in N,S-co-doped reduced graphene oxide is synthesized by pyrolysis of a Co-based metal organic framework/graphene oxide precursor in an inert atmosphere at 800 °C. The designed hollow Co3O4 nanoparticles with an average particle size of 25 nm and wall thickness of about 4-5 nm are formed by a further calcination process in air at 250 °C via the nanoscale Kirkendall effect. Both micropores and mesopores are generated in the HoCo3O4/NS-RGO framework. Benefiting from the hierarchical porous structure of the hollow Co3O4 and the co-doping of nitrogen and sulfur atoms in reduced graphene oxide, the thus-assembled battery exhibits a high specific capacity of 1590 mAh g-1 after 600 charge-discharge cycles at 1 A g-1 and a promising rate performance from 0.2 to 10 A g-1.

14.
Angew Chem Int Ed Engl ; 59(13): 5185-5192, 2020 03 23.
Article in English | MEDLINE | ID: mdl-31943687

ABSTRACT

An aza-BODIPY dye 1 bearing two hydrophobic fan-shaped tridodecyloxybenzamide pendants through 1,2,3-triazole linkages was synthesized by a click reaction and characterized. 1 H NMR studies indicated that dye 1 exhibited variable conformations through intramolecular H-bonding interaction, which is beneficial for the polymorphism of aggregation. The thermodynamic, structural, and kinetic aspect of the supramolecular polymerization of dye 1 was investigated by UV/Vis absorption spectroscopy, IR spectroscopy, AFM, TEM, and SEM. Biphasic aggregation pathways of dye 1, leads to the formation of off-pathway, metastable Agg. I and thermodynamically stable Agg. II with distinct H-aggregation spectra and nanoscale morphology. The living manner of the supramolecular polymerization of dye 1 was demonstrated in seeded polymerization experiments with temperature-modulated successive cooling-heating cycles.

15.
PeerJ ; 7: e7315, 2019.
Article in English | MEDLINE | ID: mdl-31392094

ABSTRACT

The human gut microbiota plays a major role in maintaining human health and was recently recognized as a promising target for disease prevention and treatment. Many diseases are traceable to microbiota dysbiosis, implicating altered gut microbial ecosystems, or, in many cases, disrupted microbial enzymes carrying out essential physio-biochemical reactions. Thus, the changes of essential microbial enzyme levels may predict human disorders. With the rapid development of high-throughput sequencing technologies, metagenomics analysis has emerged as an important method to explore the microbial communities in the human body, as well as their functionalities. In this study, we analyzed 156 gut metagenomics samples from patients with colorectal cancer (CRC) and adenoma, as well as that from healthy controls. We estimated the abundance of microbial enzymes using the HMP Unified Metabolic Analysis Network method and identified the differentially abundant enzymes between CRCs and controls. We constructed enzymatic association networks using the extended local similarity analysis algorithm. We identified CRC-associated enzymic changes by analyzing the topological features of the enzymatic association networks, including the clustering coefficient, the betweenness centrality, and the closeness centrality of network nodes. The network topology of enzymatic association network exhibited a difference between the healthy and the CRC environments. The ABC (ATP binding cassette) transporter and small subunit ribosomal protein S19 enzymes, had the highest clustering coefficient in the healthy enzymatic networks. In contrast, the Adenosylhomocysteinase enzyme had the highest clustering coefficient in the CRC enzymatic networks. These enzymic and metabolic differences may serve as risk predictors for CRCs and are worthy of further research.

16.
Front Microbiol ; 10: 826, 2019.
Article in English | MEDLINE | ID: mdl-31068913

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer worldwide. Its incidence is still increasing, and the mortality rate is high. New therapeutic and prognostic strategies are urgently needed. It became increasingly recognized that the gut microbiota composition differs significantly between healthy people and CRC patients. Thus, identifying the difference between gut microbiota of the healthy people and CRC patients is fundamental to understand these microbes' functional roles in the development of CRC. We studied the microbial community structure of a CRC metagenomic dataset of 156 patients and healthy controls, and analyzed the diversity, differentially abundant bacteria, and co-occurrence networks. We applied a modified zero-inflated lognormal (ZIL) model for estimating the relative abundance. We found that the abundance of genera: Anaerostipes, Bilophila, Catenibacterium, Coprococcus, Desulfovibrio, Flavonifractor, Porphyromonas, Pseudoflavonifractor, and Weissella was significantly different between the healthy and CRC groups. We also found that bacteria such as Streptococcus, Parvimonas, Collinsella, and Citrobacter were uniquely co-occurring within the CRC patients. In addition, we found that the microbial diversity of healthy controls is significantly higher than that of the CRC patients, which indicated a significant negative correlation between gut microbiota diversity and the stage of CRC. Collectively, our results strengthened the view that individual microbes as well as the overall structure of gut microbiota were co-evolving with CRC.

17.
Diabetes Metab Syndr Obes ; 12: 457-468, 2019.
Article in English | MEDLINE | ID: mdl-31114275

ABSTRACT

Purpose: To determine the prevalence and underlying pathology of abnormal glucose homeostasis in Chinese patients with non-transfusion-dependent thalassemia (NTDT). Patients and methods: In this study, we enrolled 211 patients aged 4-63 years with NTDT, including 79 ß thalassemia intermedia patients, 114 Hb H disease patients and 18 Hb E/ß thalassemia patients. All had oral glucose tolerance test, serum ferritin (SF), homeostasis model assessment (HOMA) and liver iron concentration (LIC) measurement. One hundred and twenty healthy age-matched controls were also used for the comparative purpose. Iron load was assessed by using SF and hepatic load by LIC using validated MRI techniques. Results: The 211 patients were divided into three groups according to their fasting and 2 hrs postprandial blood glucose levels: hypoglycemic, normal glucose tolerance (NGT) and hyperglycemic groups. In this study, 149 patients had NGT, 33 had hypoglycemia, 4 had diabetes and 25 had impaired glucose tolerance (IGT). None had impaired fasting glucose. There was a significant correlation between 2 hrs postprandial blood glucose levels and age, PINS120, HOMA-IR, alanine aminotransferase and LIC (P<0.05). Risk factors for IGT in NTDT patients were older age (≥24 years) and SF concentration of ≥2,500 ng/mL. Conclusion: Age ≥24 years and SF ≥2,500 ng/mL of NTDT patients were at a greater risk for impaired glucose tolerance.

18.
BMC Genomics ; 20(Suppl 2): 185, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30967122

ABSTRACT

BACKGROUND: Discovering the key microbial species and environmental factors of microbial community and characterizing their relationships with other members are critical to ecosystem studies. The microbial co-occurrence patterns across a variety of environmental settings have been extensively characterized. However, previous studies were limited by their restriction toward pairwise relationships, while there was ample evidence of third-party mediated co-occurrence in microbial communities. METHODS: We implemented and applied the triplet-based liquid association analysis in combination with the local similarity analysis procedure to microbial ecology data. We developed an intuitive scheme to visualize those complex triplet associations along with pairwise correlations. Using a time series from the marine microbial ecosystem as example, we identified pairs of operational taxonomic units (OTUs) where the strength of their associations appeared to relate to the values of a third "mediator" variable. These "mediator" variables appear to modulate the associations between pairs of bacteria. RESULTS: Using this analysis, we were able to assess the OTUs' ability to regulate its functional partners in the community, typically not manifested in the pairwise correlation patterns. For example, we identified Flavobacteria as a multifaceted player in the marine microbial ecosystem, and its clades were involved in mediating other OTU pairs. By contrast, SAR11 clades were not active mediators of the community, despite being abundant and highly correlated with other OTUs. Our results suggested that Flavobacteria are more likely to respond to situations where particles and unusual sources of dissolved organic material are prevalent, such as after a plankton bloom. On the other hand, SAR11s are oligotrophic chemoheterotrophs with inflexible metabolisms, and their relationships with other organisms may be less governed by environmental or biological factors. CONCLUSIONS: By integrating liquid association with local similarity analysis to explore the mediated co-varying dynamics, we presented a novel perspective and a useful toolkit to analyze and interpret time series data from microbial community. Our augmented association network analysis is thus more representative of the true underlying dynamic structure of the microbial community. The analytic software in this study was implemented as new functionalities of the ELSA (Extended local similarity analysis) tool, which is available for free download ( http://bitbucket.org/charade/elsa ).


Subject(s)
Algorithms , Bacteria/classification , Computational Biology/methods , Metagenome , Microbial Interactions , Microbiota , Software , Bacteria/genetics , Biodiversity
19.
Genes (Basel) ; 10(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-30717284

ABSTRACT

The imbalance of human gut microbiota has been associated with colorectal cancer. In recent years, metagenomics research has provided a large amount of scientific data enabling us to study the dedicated roles of gut microbes in the onset and progression of cancer. We removed unrelated and redundant features during feature selection by mutual information. We then trained a random forest classifier on a large metagenomics dataset of colorectal cancer patients and healthy people assembled from published reports and extracted and analysed the information from the learned decision trees. We identified key microbial species associated with colorectal cancers. These microbes included Porphyromonasasaccharolytica, Peptostreptococcusstomatis, Fusobacterium,Parvimonas sp., Streptococcusvestibularis and Flavonifractorplautii. We obtained the optimal splitting abundance thresholds for these species to distinguish between healthy and colorectal cancer samples. This extracted consensus decision tree may be applied to the diagnosis of colorectal cancers.


Subject(s)
Algorithms , Colorectal Neoplasms/microbiology , Gastrointestinal Microbiome , Metagenome , Firmicutes/genetics , Firmicutes/isolation & purification , Fusobacterium/genetics , Fusobacterium/isolation & purification , Humans , Porphyromonas/genetics , Porphyromonas/isolation & purification , Sequence Analysis, DNA/methods
20.
Genes (Basel) ; 9(6)2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29925824

ABSTRACT

With the rapid development of high-throughput sequencing technology, the analysis of metagenomic sequencing data and the accurate and efficient estimation of relative microbial abundance have become important ways to explore the microbial composition and function of microbes. In addition, the accuracy and efficiency of the relative microbial abundance estimation are closely related to the algorithm and the selection of the reference sequence for sequence alignment. We introduced the microbial core genome as the reference sequence for potential microbes in a metagenomic sample, and we constructed a finite mixture and latent Dirichlet models and used the Gibbs sampling algorithm to estimate the relative abundance of microorganisms. The simulation results showed that our approach can improve the efficiency while maintaining high accuracy and is more suitable for high-throughput metagenomic data. The new approach was implemented in our CoreProbe package which provides a pipeline for an accurate and efficient estimation of the relative abundance of microbes in a community. This tool is available free of charge from the CoreProbe's website: Access the Docker image with the following instruction: sudo docker pull panhongfei/coreprobe:1.0.

SELECTION OF CITATIONS
SEARCH DETAIL
...