Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMC Cancer ; 23(1): 1188, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049731

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, highlighting an unmet clinical need for more effective therapies. This study aims to evaluate the causal relationship between 4,489 plasma proteins and CRC to identify potential therapeutic targets for CRC. METHODS: We conducted two-sample Mendelian randomization (MR) analysis to examine the causal effects of plasma proteins on CRC. Mediation analysis was performed to assess the indirect effects of plasma proteins on CRC through associated risk factors. In addition, we conducted a phenome-wide association study using the UK Biobank dataset to examine associations between these plasma proteins and other phenotypes. RESULTS: Out of 4,489 plasma proteins, MR analysis revealed causal associations with CRC for 23 proteins, including VIMP, MICB, TNFRSF11B, C5orf38 and SLC5A8. Our findings also confirm the associations between reported risk factors and CRC. Mediation analysis identified mediating effects of proteins on CRC outcomes through risk factors. Furthermore, MR analysis identified 154 plasma proteins are causally linked to at least one CRC risk factor. CONCLUSIONS: Our study evaluated the causal relationships between plasma proteins and CRC, providing a more complete understanding of potential therapeutic targets for CRC.


Subject(s)
Colorectal Neoplasms , Proteome , Humans , Proteome/genetics , Mendelian Randomization Analysis , Risk Factors , Blood Proteins , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Monocarboxylic Acid Transporters
2.
Cell Death Dis ; 14(12): 846, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114473

ABSTRACT

Radiotherapy is an important treatment modality for patients with esophageal cancer; however, the response to radiation varies among different tumor subpopulations due to tumor heterogeneity. Cancer cells that survive radiotherapy (i.e., radioresistant) may proliferate, ultimately resulting in cancer relapse. However, the interaction between radiosensitive and radioresistant cancer cells remains to be elucidated. In this study, we found that the mutual communication between radiosensitive and radioresistant esophageal cancer cells modulated their radiosensitivity. Radiosensitive cells secreted more exosomal let-7a and less interleukin-6 (IL-6) than radioresistant cells. Exosomal let-7a secreted by radiosensitive cells increased the radiosensitivity of radioresistant cells, whereas IL-6 secreted by radioresistant cells decreased the radiosensitivity of radiosensitive cells. Although the serum levels of let-7a and IL-6 before radiotherapy did not vary significantly between patients with radioresistant and radiosensitive diseases, radiotherapy induced a more pronounced decrease in serum let-7a levels and a greater increase in serum IL-6 levels in patients with radioresistant cancer compared to those with radiosensitive cancer. The percentage decrease in serum let-7a and the percentage increase in serum IL-6 levels at the early stage of radiotherapy were inversely associated with tumor regression after radiotherapy. Our findings suggest that early changes in serum let-7a and IL-6 levels may be used as a biomarker to predict the response to radiotherapy in patients with esophageal cancer and provide new insights into subsequent treatments.


Subject(s)
Esophageal Neoplasms , Interleukin-6 , Humans , Neoplasm Recurrence, Local , Radiation Tolerance/physiology , Esophageal Neoplasms/radiotherapy
3.
Eur J Pharmacol ; 957: 175986, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37598924

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer, and is one of the leading causes of cancer-related death worldwide. At the time of diagnosis, about 20% of patients with CRC present metastatic disease. Regorafenib, an oral multi-kinase inhibitor, has been demonstrated the efficacy and tolerability in patients with metastatic CRC. Oxaliplatin is a frontline treatment regimen for CRC, and combination treatments with oxaliplatin and other chemotherapeutic agents exert superior therapeutic effects. However, side effects and drug resistance limited their further clinical application. Here, we found that combined treatment with regorafenib and oxaliplatin synergistically enhanced anti-tumor activities in CRC by activating reactive oxygen species (ROS) mediated endoplasmic reticulum (ER) stress, C-Jun-amino-terminal kinase (JNK) and p38 signaling pathways. Regorafenib promoted ROS production by suppressing the expression of selenoprotein S (SELENOS). Knocking down SELENOS sensitized ROS-mediated anti-tumor effects of regorafenib in CRC cells. Furthermore, mouse xenograft models demonstrated that synergistic anti-tumor effects of combined treatment with regorafenib and oxaliplatin. This study provided solid experimental evidences for the combined treatment with regorafenib and oxaliplatin in CRC.


Subject(s)
Colonic Neoplasms , Animals , Mice , Humans , Oxaliplatin/pharmacology , Reactive Oxygen Species , Colonic Neoplasms/drug therapy , Cell Death , Oxidative Stress , Disease Models, Animal
4.
Br J Radiol ; 96(1149): 20220550, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37162165

ABSTRACT

OBJECTIVE: Lung cancer is the leading cause of cancer-associated mortality worldwide. Central nervous system (CNS) metastasis is a prevalent and serious complication. The most common treatment for brain metastasis (BM) is still radiation therapy (RT). An increasing number of drugs have been shown to have intracranial activity or to sensitize tumours to radiotherapy. METHODS: Consecutive advanced multiline therapy failure in patients with non-small-cell lung cancer (NSCLC) with BM at the authors' hospital were retrospectively reviewed. Eligible patients were divided into two groups: Apatinib+RT group and RT group. Intracranial progression-free survival (PFS) and overall survival (OS) were analysed using the Kaplan-Meier method. RESULTS: The median intracranial PFS for the RT group and Apatinib+RT group was 5.83 months and 11.81 months (p = 0.034). The median OS for the RT group and Apatinib+RT group was 9.02 months and 13.62 months (p = 0.311). The Apatinib+RT group had a better intracranial PFS, but there were no significant differences between the two arms in OS. The Apatinib+RT group had significantly reduced symptoms caused by BM. CONCLUSION: RT combined with apatinib could help to control intracranial metastases. The Apatinib+RT group had significantly reduced symptoms caused by BM and improved quality of life for patients, the safety of the two treatments was similar. ADVANCES IN KNOWLEDGE: Here, we propose that RT combined with apatinib can significantly relieve brain symptoms and tolerate side-effects without affecting OS in patients with BM following failure of multiline therapy for NSCLC. Of course, this paper is a retrospective origin study, and more powerful evidence is needed to demonstrate.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/radiotherapy , Retrospective Studies , Quality of Life , Brain Neoplasms/secondary
5.
Front Oncol ; 12: 813854, 2022.
Article in English | MEDLINE | ID: mdl-35145916

ABSTRACT

Colon cancer is one of the most common cancer in the world. Doxorubicin (DOX) is a classical anti-tumor drug which widely used in treatment of cancers, however, high toxicity limited its further clinical application. Thus, it is urgent to find new drugs with low toxicity and high efficiency to treat colon cancer. Isoalantolactone (IATL), an isomeric sesquiterpene lactone isolated from the plant of inula helenium, has been reported to have anti-cancer activity against a variety of cancer cells. However, the function of IATL in colon cancer remains unclear. Here, we demonstrated that IATL inhibited colon cancer cell growth by increasing cellular reactive oxygen species (ROS) production. Further study showed that ROS accumulation contributed to DNA damage and JNK signaling pathway activation. In addition, we found that IATL markedly enhanced DOX-induced cell cytotoxicity in colon cancer cells. IATL in combination with DOX significantly increased the ROS production, induced DNA damage and activated JNK signaling pathway. Taken together, our data suggested that combined treatment with IATL and DOX may serve as a potential therapeutics for colon cancer.

6.
Phytomedicine ; 98: 153932, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35104762

ABSTRACT

BACKGROUND: Globally, colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Oxaliplatin based treatments are frequently used as chemotherapeutic methods for CRC, however, associated side effects and drug resistance often limit their clinical application. Dihydroartemisinin (DHA) induces apoptosis in various cancer cells by increasing reactive oxygen species (ROS) production. However, the direct target of DHA and underlying molecular mechanisms in oxaliplatin-mediated anti-tumor activities against CRC are unclear. METHODS: We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), flow cytometry, and colony formation assays to investigate cell phenotype alterations and ROS generation. We also used quantitative Real-Time PCR (qRT-PCR) and western blotting to measure relative gene and protein expression. Finally, an in vivo mouse xenograft model was used to assess the anti-tumor activity of oxaliplatin and DHA alone, and combinations. RESULTS: DHA synergistically enhanced the anti-tumor activity of oxaliplatin in colon cancer cells by regulating ROS-mediated ER stress, signal transducer and activator of transcription 3 (STAT3), C-Jun-amino-terminal kinase (JNK), and p38 signaling pathways. Mechanistically, DHA increased ROS levels by inhibiting peroxiredoxin 2 (PRDX2) expression, and PRDX2 knockdown sensitized DHA-mediated cell growth inhibition and ROS production in CRC cells. A mouse xenograft model showed strong anti-tumor effects from combination treatments when compared with single agents. CONCLUSIONS: We demonstrated an improved therapeutic strategy for CRC patients by combining DHA and oxaliplatin treatments.

7.
Cancer Manag Res ; 12: 8695-8701, 2020.
Article in English | MEDLINE | ID: mdl-33061568

ABSTRACT

PURPOSE: To evaluate the predictive value of blood lymphocyte, monocyte to lymphocyte ratio (MLR), and neutrophil to lymphocyte ratio (NLR) for radiation pneumonia (RP) in patients with thoracic tumors receiving radiotherapy. PATIENTS AND METHODS: The clinical data of 65 patients with thoracic tumor (esophageal cancer, lung cancer) treated by radiotherapy in our hospital were retrospectively analyzed. Patients were divided into the RP group and the non-RP group according to the Common Terminology Criteria for Adverse Events (CTCAE 5.0). Data on blood cell counts, including lymphocytes, monocytes, and neutrophils, were collected before (0 weeks) and after 1, 2, and 4 weeks of radiotherapy. RESULTS: Of the 65 patients enrolled, 27 developed radiation pneumonia and 38 did not. Patients' clinical factors, including age, TNM stage, tumor type, underlying lung disease, and history of smoking, had no correlation with RP. ANOVA of repeated measurement data showed that the changes of MLR in the group with RP during radiotherapy were significantly different from those in the non-RP group (P<0.05). The RP prediction model based on the identified risk factors was established using receiver operator characteristic curves. The results showed that the area under the curve for the monocyte to lymphocyte ratio was 0.755 (95% CI, 0.63-0.87, P=0.000), and the best cutoff point for MLR was 0.426. CONCLUSION: MLR could predict radiation pneumonia in patients with thoracic tumor radiotherapy and achieve early monitoring, early prevention, and treatment.

8.
Clin Cancer Res ; 23(17): 5311-5319, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28606918

ABSTRACT

Purpose: To identify tumor-derived exosomal biomarkers that are able to discriminate between adenocarcinoma and squamous cell carcinoma (SCC) as a noninvasive method in the early diagnosis of non-small cell lung cancer (NSCLC).Experimental Design: Tumor-derived exosomes from the plasma of early-stage NSCLC patients were isolated. Exosomal miRNA profiling of 46 stage I NSCLC patients and 42 healthy individuals was performed using miRNA-seq to identify and validate adenocarcinoma- and SCC-specific miRNAs. The diagnostic accuracy of select miRNAs was tested further with an additional 60 individuals.Results: There were 11 and 6 miRNAs expressed at remarkably higher levels, 13 and 8 miRNAs expressed at lower levels in adenocarcinoma and SCC patients, respectively, compared with healthy volunteers. Distinct adenocarcinoma- and SCC-specific exosomal miRNAs were validated. The reliability of miRNA-seq data was verified with several demonstrated diagnostic potential miRNAs for NSCLC and other carcinomas, as reported in previous studies, such as let-7, miR-21, miR-24, and miR-486. The results indicated that miR-181-5p, miR-30a-3p, miR-30e-3p, and miR-361-5p were adenocarcinoma-specific, and miR-10b-5p, miR-15b-5p, and miR-320b were SCC-specific. The diagnostic accuracy of three combination miRNA panels was evaluated using an AUC value of 0.899, 0.936, and 0.911 for detecting NSCLC, adenocarcinoma, and SCC, respectively.Conclusions: Tumor-derived exosomal miRNAs, adenocarcinoma-specific miR-181-5p, miR-30a-3p, miR-30e-3p and miR-361-5p, and SCC-specific miR-10b-5p, miR-15b-5p, and miR-320b were observed by next-generation sequencing, and their diagnostic accuracy were verified. These miRNAs may be promising and effective candidates in the development of highly sensitive, noninvasive biomarkers for early NSCLC diagnosis. Clin Cancer Res; 23(17); 5311-9. ©2017 AACR.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , MicroRNAs/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology , Adult , Aged , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Exosomes/genetics , Exosomes/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasm Staging
9.
J Transl Med ; 14(1): 225, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27465405

ABSTRACT

BACKGROUND: Acquired radioresistance during radiotherapy is considered as the most important reason for local tumor recurrence or treatment failure. Circular RNAs (circRNAs) have recently been identified as microRNA sponges and involve in various biological processes. The purpose of this study is to investigate the role of circRNAs in the radioresistance of esophageal cancer. METHODS: Total RNA was isolated from human parental cell line KYSE-150 and self-established radioresistant esophageal cancer cell line KYSE-150R, and hybridized to Arraystar Human circRNA Array. Quantitative real-time PCR was used to confirm the circRNA expression profiles obtained from the microarray data. Bioinformatic tools including gene ontology (GO) analysis, KEGG pathway analysis and network analysis were done for further assessment. RESULTS: Among the detected candidate 3752 circRNA genes, significant upregulation of 57 circRNAs and downregulation of 17 circRNAs in human radioresistant esophageal cancer cell line KYSE-150R were observed compared with the parental cell line KYSE-150 (fold change ≥2.0 and P < 0.05). There were 9 out of these candidate circRNAs were validated by real-time PCR. GO analysis revealed that numerous target genes, including most microRNAs were involved in the biological processes. There were more than 400 target genes enrichment on Wnt signaling pathway. CircRNA_001059 and circRNA_000167 were the two largest nodes in circRNA/microRNA co-expression network. CONCLUSIONS: Our study revealed a comprehensive expression and functional profile of differentially expressed circRNAs in radioresistant esophageal cancer cells, indicating possible involvement of these dysregulated circRNAs in the development of radiation resistance.


Subject(s)
Computational Biology/methods , Esophageal Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , RNA/genetics , Radiation Tolerance/genetics , Cell Line, Tumor , Down-Regulation/genetics , Gene Ontology , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis , RNA/metabolism , RNA, Circular , Real-Time Polymerase Chain Reaction , Up-Regulation/genetics
10.
J Transl Med ; 13: 104, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25888911

ABSTRACT

BACKGROUND: Acquired radioresistance has significantly compromised the efficacy of radiotherapy for esophageal cancer. The purpose of this study is to investigate the roles of epithelial-mesenchymal transition (EMT) and the Wnt/ß-catenin signaling pathway in the acquirement of radioresistance during the radiation treatment of esophageal cancer. METHODS: We previously established a radioresistant cell line (KYSE-150R) from the KYSE-150 cell line (a human cell line model for esophageal squamous cell carcinoma) with a gradient cumulative irradiation dose. In this study, the expression of EMT phenotypes and the Wnt/ß-catenin signaling pathway proteins were examined by real-time PCR, western blot and immunofluorescence in the KYSE-150R cells. The KYSE-150R cells were then treated with a ß-Catenin/Tcf inhibitor FH535. The expressions of nuclear and cytoplasmic ß-catenin and EMT markers in KYSE-150R cells were assessed at both mRNA and protein level after FH535 treatment. The radiosensitization effect of FH535 on KYSE-150R was evaluated by CCK8 analysis and a colony forming assay. DNA repair capacities was detected by the neutral comet assays. RESULTS: KYSE-150R cell line displayed obvious radiation resistance and had a stable genetic ability. EMT phenotype was presented in the KYSE-150R cells with decreased E-cadherin and increased snail and twist expressions. The up-regulated expressions of Wnt/ß-catenin signaling pathway proteins (Wnt1, FZD1-4, GSK3ß, CTNNB1 and Cyclin D1), the increased phosphorylation of GSK3ß, and the decreased phosphorylation of ß-catenin were observed in KYSE-150R cells compared with KYSE-150 cells, implicating the activation of the Wnt pathway in KYSE-150R cells. The expression of nuclear ß-catenin and nuclear translocation of ß-catenin from the cytoplasm was decreased after FH535 treatment. FH535 also reversed EMT phenotypes by increasing E-cadherin expression. The cell proliferation rates of KYSE-150R were dose-dependent and the radiation survival fraction was significantly decreased upon FH535 treatment. Neutral comet assays indicated that FH535 impairs DNA double stranded break repair in KYSE-150R cells. CONCLUSIONS: Acquisition of radioresistance and EMT in esophageal cancer cells is associated with the activation of the Wnt/ß-catenin pathway. EMT phenotypes can be reduced and the radiosensitivity of esophageal cancer cells can be enhanced by inhibiting the Wnt/ß-catenin pathway with FH535 treatment.


Subject(s)
Carcinoma, Squamous Cell/pathology , Epithelial-Mesenchymal Transition/drug effects , Esophageal Neoplasms/pathology , Radiation Tolerance/drug effects , Sulfonamides/pharmacology , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Survival/drug effects , Esophageal Squamous Cell Carcinoma , Humans , Phenotype , Protein Transport/drug effects , Radiation-Sensitizing Agents/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL