Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
J Gene Med ; 26(4): e3683, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571451

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is a potentially lethal acute disease highly involved in coagulation disorders. Pyroptosis has been reported to exacerbate coagulation disorders, yet this implication has not been illustrated completely in AP. METHODS: RNA sequencing data of peripheral blood of AP patients were downloaded from the Gene Expression Omnibus database. Gene set variation analysis and single sample gene set enrichment analysis were used to calculate the enrichment score of coagulation-related signatures and pyroptosis. Spearman and Pearson correlation analysis was used for correlation analysis. Peripheral blood samples and related clinical parameters were collected from patients with AP and healthy individuals. A severe AP (SAP) model of mice was established using caerulein and lipopolysaccharide. Enzyme-linked immunosorbent assay, chemiluminescence immunoassay and immunohistochemical analysis were employed to detect the level of coagulation indicators and pyroptosis markers in serum and pancreas tissues. Additionally, we evaluated the effect of pyroptosis inhibition and NLRC4 silence on the function of human umbilical vein endothelial cells (HUVECs). RESULTS: Coagulation disorders were significantly positively correlated to the severity of AP, and they could be a predictor for AP severity. Further analyses indicated that six genes-DOCK9, GATA3, FCER1G, NLRC4, C1QB and C1QC-may be involved in coagulation disorders of AP. Among them, NLRC4 was positively related to pyroptosis that had a positive association with most coagulation-related signatures. Data from patients showed that NLRC4 and other pyroptosis markers, including IL-1ß, IL-18, caspase1 and GSDMD, were significant correlation to AP severity. In addition, NLRC4 was positively associated with coagulation indicators in AP patients. Data from mice showed that NLRC4 was increased in the pancreas tissues of SAP mice. Treatment with a pyroptosis inhibitor effectively alleviated SAP and coagulation disorders in mice. Finally, inhibiting pyroptosis or silencing NLRC4 could relieve endothelial dysfunction in HUVECs. CONCLUSIONS: NLRC4-mediated pyroptosis damages the function of endothelial cells and thereby exacerbates coagulation disorders of AP. Inhibiting pyroptosis could improve coagulation function and alleviate AP.


Subject(s)
Blood Coagulation Disorders , Pancreatitis , Animals , Humans , Mice , Acute Disease , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/complications , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Pancreatitis/genetics , Pyroptosis
2.
Comput Struct Biotechnol J ; 24: 292-305, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38681133

ABSTRACT

Sepsis, a life-threatening medical condition, manifests as new or worsening organ failures due to a dysregulated host response to infection. Many patients with sepsis have manifested a hyperinflammatory phenotype leading to the identification of inflammatory modulation by corticosteroids as a key treatment modality. However, the optimal use of corticosteroids in sepsis treatment remains a contentious subject, necessitating a deeper understanding of their physiological and pharmacological effects. Our study conducts a comprehensive review of randomized controlled trials (RCTs) focusing on traditional corticosteroid treatment in sepsis, alongside an analysis of evolving clinical guidelines. Additionally, we explore the emerging role of artificial intelligence (AI) in medicine, particularly in diagnosing, prognosticating, and treating sepsis. AI's advanced data processing capabilities reveal new avenues for enhancing corticosteroid therapeutic strategies in sepsis. The integration of AI in sepsis treatment has the potential to address existing gaps in knowledge, especially in the application of corticosteroids. Our findings suggest that combining corticosteroid therapy with AI-driven insights could lead to more personalized and effective sepsis treatments. This approach holds promise for improving clinical outcomes and presents a significant advancement in the management of this complex and often fatal condition.

3.
Biochim Biophys Acta Gen Subj ; 1868(7): 130628, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38642815

ABSTRACT

BACKGROUND: Severe inflammation and oxidative stress are characteristics of sepsis-associated kidney injury with high morbidity and mortality. Eriocitrin (ERI) has shown promise in suppressing sepsis-associated kidney injury and LPS-induced periodontal disease, however, its efficacy in alleviating SAKI remains unexplored. This study aimed to investigate the therapeutic potential of ERI on SAKI through in vivo and in vitro experiments, elucidating its underlying mechanism. METHODS: The therapeutic effects of ERI against SAKI were evaluated by survival rate, changes of serum creatinine (Scr) and blood urea nitrogen (BUN) and statistic of renal histological score in a Cecal ligation and puncture (CLP)-induced septic mice. Impactions about anti-coagulation, anti-inflammation, anti-oxidative stress and improvement of mitochondrial damage and mitochondrial morphology were further assayed. In vitro, HUVECs upon stimulation of LPS with or without different dosage of ERI, followed by evaluating changes in inflammation, mitochondrial dynamic equilibrium and signaling pathways. RESULTS: ERI demonstrated ameliorative effects on SAKI by attenuating inflammation, oxidative stress and coagulation evidenced by the improved survival rate, alleviated kidney histological injury, declined BUN and Scr in serum and diminished levels of inflammation cytokines, and coagulation factors. Mechanistically, ERI suppressed DRP1-regulated mitochondrial fission and promoted OPA1-modulated mitochondrial fusion by activating Nrf2 in septic mice and LPS-stimulated HUVECs, which maintained mitochondrial dynamic equilibrium, improved mitochondrial morphology, assured integrity of mitochondrial function, decreased oxidative stress, impeded overwhelming inflammation, and thus, played a pivotal role in ERI's protection against SAKI. CONCLUSION: Our data confirmed the therapeutic potential of ERI in mitigating SAKI,suggesting its viability as a pharmacological agent in clinic settings.

4.
Microbiol Spectr ; 12(5): e0255823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526296

ABSTRACT

This study aimed to investigate the prognostic value of a novel droplet digital polymerase chain reaction (DDPCR) assay in sepsis patients. In this prospective cohort study, univariable and multivariable Cox regressions were used to assess risk factors for 28-day mortality. We also monitored pathogen load together with clinical indicators in a subgroup of the cohort. A total of 107 sepsis patients with positive baseline DDPCR results were included. Detection of poly-microorganisms [adjusted hazard ratio (HR) = 3.19; 95% confidence interval (CI) = 1.34-7.62; P = 0.009], high Charlson Comorbidity Index (CCI) score (adjusted HR = 1.14; 95% CI = 1.01-1.29; P = 0.041), and Sequential Organ Failure Assessment (SOFA) score (adjusted HR = 1.18; 95% CI = 1.05-1.32; P = 0.005) at baseline were independent risk factors for 28-day mortality while initial pathogen load was not associated (adjusted HR = 1.17; 95% CI = 0.82-1.66; P = 0.385). Among 63 patients with serial DDPCR results, an increase in pathogen load at days 6-8 compared to baseline was a risk factor for 28-day mortality (P = 0.008). Also, pathogen load kinetics were significantly different between day-28 survivors and nonsurvivors (P = 0.022), with a decline overtime only in survivors and an increase from days 3 and 4 to days 6-8 in nonsurvivors. Using DDPCR technique, we found that poly-microorganisms detected and increased pathogen load a week after sepsis diagnosis were associated with poor prognosis.IMPORTANCEThis prospective study was initiated to explore the prognostic implications of a novel multiplex PCR assay in sepsis. Notably, our study was the largest cohort of sepsis with droplet digital polymerase chain reaction pathogen monitoring to date, allowing for a comprehensive evaluation of the prognostic significance of both pathogen species and load. We found that detection of poly-microorganisms was an independent risk factors for 28-day mortality. Also, pathogen load increase 1 week after sepsis diagnosis was a risk factor for 28-day mortality, and differential pathogen load kinetics were identified between day-28 survivors and nonsurvivors. Overall, this study demonstrated that pathogen species and load were highly correlated with sepsis prognosis. Patients exhibiting conditions mentioned above face a more adverse prognosis, suggesting the potential need for an escalation of antimicrobial therapy.Registered at ClinicalTrials.gov (NCT05190861).


Subject(s)
Polymerase Chain Reaction , Sepsis , Humans , Sepsis/microbiology , Sepsis/mortality , Sepsis/diagnosis , Prospective Studies , Female , Male , Prognosis , Middle Aged , Aged , Polymerase Chain Reaction/methods , Risk Factors , Bacterial Load/methods , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Aged, 80 and over , Kinetics
5.
Adv Sci (Weinh) ; 11(19): e2307409, 2024 May.
Article in English | MEDLINE | ID: mdl-38477567

ABSTRACT

Uncontrollable massive bleeding caused by trauma will cause the patient to lose a large amount of blood and drop body temperature quickly, resulting in hemorrhagic shock. This study aims to develop a hemostatic product for hemorrhage management. In this study, waste pomelo peel as raw material is chosen. It underwent processes of carbonization, purification, and freeze-drying. The obtained carbonized pomelo peel (CPP) is hydrophilic and exhibits a porous structure (nearly 80% porosity). The water/blood absorption ratio is significantly faster than the commercial Gelfoam and has a similar water/blood absorption capacity. In addition, the CPP showed a water-triggered shape-recoverable ability. Moreover, the CPP shows ideal cytocompatibility and blood compatibility in vitro and favorable tissue compatibility after long terms of subcutaneous implantation. Furthermore, CPP can absorb red blood cells and fibrin. It also can absorb platelets and activate platelets, and it is capable of achieving rapid hemostasis on the rat tail amputation and hepatectomized hemorrhage model. In addition, the CPP not only can quickly stop bleeding in the rat liver-perforation and rabbit heart uncontrolled hemorrhage models, but also promotes rat liver and rabbit heart tissue regeneration in situ. These results suggest the CPP has shown great potential for managing uncontrolled hemorrhage.


Subject(s)
Cellulose , Disease Models, Animal , Hemorrhage , Animals , Rabbits , Rats , Cellulose/chemistry , Citrus/chemistry , Hemostatics/pharmacology , Male , Hemostasis/drug effects , Rats, Sprague-Dawley , Gels , Wounds and Injuries/complications
6.
Pancreatology ; 24(3): 350-356, 2024 May.
Article in English | MEDLINE | ID: mdl-38342660

ABSTRACT

BACKGROUND: This study aimed to investigate and validate machine-learning predictive models combining computed tomography and clinical data to early predict organ failure (OF) in Hyperlipidemic acute pancreatitis (HLAP). METHODS: Demographics, laboratory parameters and computed tomography imaging data of 314 patients with HLAP from the First Affiliated Hospital of Wenzhou Medical University between 2017 and 2021, were retrospectively analyzed. Sixty-five percent of patients (n = 204) were assigned to the training group and categorized as patients with and without OF. Parameters were compared by univariate analysis. Machine-learning methods including random forest (RF) were used to establish model to predict OF of HLAP. Areas under the curves (AUCs) of receiver operating characteristic were calculated. The remaining 35% patients (n = 110) were assigned to the validation group to evaluate the performance of models to predict OF. RESULTS: Ninety-three (45.59%) and fifty (45.45%) patients from the training and the validation cohort, respectively, developed OF. The RF model showed the best performance to predict OF, with the highest AUC value of 0.915. The sensitivity (0.828) and accuracy (0.814) of RF model were both the highest among the five models in the study cohort. In the validation cohort, RF model continued to show the highest AUC (0.820), accuracy (0.773) and sensitivity (0.800) to predict OF in HLAP, while the positive and negative likelihood ratios and post-test probability were 3.22, 0.267 and 72.85%, respectively. CONCLUSIONS: Machine-learning models can be used to predict OF occurrence in HLAP in our pilot study. RF model showed the best predictive performance, which may be a promising candidate for further clinical validation.


Subject(s)
Hyperlipidemias , Pancreatitis , Humans , Acute Disease , Pilot Projects , Retrospective Studies , Machine Learning , Tomography, X-Ray Computed
7.
Shock ; 61(3): 367-374, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38407987

ABSTRACT

ABSTRACT: Objective: To achieve a better prediction of in-hospital mortality, the Sequential Organ Failure Assessment (SOFA) score needs to be adjusted and combined with comorbidities. This study aims to enhance the prediction of SOFA score for in-hospital mortality in patients with Sepsis-3. Methods: This study adjusted the maximum SOFA score within the first 3 days (Max Day3 SOFA) in relation to in-hospital mortality using logistic regression and incorporated the age-adjusted Charlson Comorbidity Index (aCCI) as a continuous variable to build the age-adjusted Charlson Comorbidity Index-Sequential Organ Failure Assessment (aCCI-SOFA) model. The outcome was in-hospital mortality. We developed, internally validated, and externally validated the aCCI-SOFA model using cohorts of Sepsis-3 patients from the MIMIC-IV, MIMIC-III (CareVue), and the FAHWMU cohort. The predictive performance of the model was assessed through discrimination and calibration, which was assessed using the area under the receiver operating characteristic and calibration curves, respectively. The overall predictive effect was evaluated using the Brier score. Measurements and main results: Compared with the Max Day3 SOFA, the aCCI-SOFA model showed significant improvement in area under the receiver operating characteristic with all cohorts: development cohort (0.81 vs 0.75, P < 0.001), internal validation cohort (0.81 vs 0.76, P < 0.001), MIMIC-III (CareVue) cohort (0.75 vs 0.68, P < 0.001), and FAHWMU cohort (0.72 vs 0.67, P = 0.001). In sensitivity analysis, it was suggested that the application of aCCI-SOFA in early nonseptic shock patients had greater clinical value, with significant differences compared with the original SOFA scores in all cohorts ( P < 0.05). Conclusion: For septic patients in intensive care unit, the aCCI-SOFA model exhibited superior predictive performance. The application of aCCI-SOFA in early nonseptic shock patients had greater clinical value.


Subject(s)
Sepsis , Humans , Hospital Mortality , Retrospective Studies , Prognosis , Intensive Care Units , ROC Curve
8.
Addict Biol ; 29(2): e13361, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380780

ABSTRACT

BACKGROUND: The relationship between fibrosis-4 (FIB-4) index and all-cause mortality in critically ill patients with alcohol use disorder (AUD) is unclear. The present study aimed to investigate the predictive ability of FIB-4 for all-cause mortality in critically ill AUD patients and the association between them. METHODS: A total of 2528 AUD patients were included using the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. FIB-4 was calculated for each patient using the existing formula. The patients were equally divided into four groups based on the quartiles of FIB-4. Multivariate logistic regression and Cox proportional hazard model were used to evaluate the association of FIB-4 with in-hospital mortality, 28-day mortality and 1-year mortality. Kaplan-Meier curves were used to analyse the incidence of 28-day mortality among four groups. RESULTS: FIB-4 was positively associated with 28-day mortality of AUD patients with hazard ratio (HR) of 1.354 [95% confidence interval (CI) 1.192-1.538]. There were similar trends in the in-hospital mortality [odds ratio (OR): 1.440, 95% CI (1.239-1.674)] and 1-year mortality [HR: 1.325, 95% CI (1.178-1.490)]. CONCLUSION: Increased FIB-4 is associated with greater in-hospital mortality, 28-day mortality and 1-year mortality in critically ill AUD patients.


Subject(s)
Alcoholism , Humans , Critical Illness , Critical Care , Odds Ratio
9.
Ann Hematol ; 103(2): 653-662, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38175252

ABSTRACT

We report three heterozygous PROS1 mutations that caused type I protein S deficiency in three unrelated Chinese families. We measured protein S activity and antigen levels for all participants, screened them for mutations in the PROS1 gene. And we employed the calibrated automated thrombin generation (CAT) method to investigate thrombin generation. Numerous bioinformatics tools were utilized to analyze the conservation, pathogenicity of mutation, and spatial structure of the protein S. Phenotyping analysis indicated that all three probands exhibited simultaneous reduced levels of PS:A, TPS:Ag, and FPS:Ag. Genetic testing revealed that proband A harbored a heterozygous c.458_458delA (p.Lys153Serfs*6) mutation in exon 5, proband B carried a heterozygous c.1687C>T (p.Gln563stop) mutation in exon 14, and proband C exhibited a heterozygous c.200A>C (p.Glu67Ala) mutation in exon 2. Bioinformatic analysis predicted that the p.Lys153Serfs*6 frameshift mutation and the p.Gln563stop nonsense mutation in the protein S were classified as "disease-causing." The identification of the novel mutation p.Lys153Serfs*6 in PROS1 enriches the Human Genome Database. Our research suggests that these three mutations (p.Lys153Serfs*6, p.Gln563stop, and p.Glu67Ala) are possibly responsible for the decreased level of protein S in the three families. Furthermore, the evidence also supports the notion that individuals who are asymptomatic but have a family history of PSD can benefit from genetic analysis of the PROS1 gene.


Subject(s)
Blood Proteins , Protein S Deficiency , Humans , Blood Proteins/genetics , Protein S Deficiency/diagnosis , Protein S Deficiency/genetics , Thrombin , Mutation , China , Pedigree , Protein S/genetics
10.
J Biochem Mol Toxicol ; 38(1): e23540, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37728183

ABSTRACT

Dose-dependent heart failure is a major complication of the clinical use of doxorubicin (Dox), one of the most potent chemotherapeutic agents. Effective adjuvant therapy is required to prevent Dox-induced cardiotoxicity. Currently, plant-derived exosome-like nanovesicle (PELNV) has revealed their salubrious antioxidant and immunological regulating actions in various disease models. In this study, we isolated, purified and characterized Beta vulgaris-derived exosome-like nanovesicle (BELNV). Dox or normal saline was given to HL-1 cells (3 µM) and 8-week C57BL/6N mice (5 mg/kg bodyweight per week for 4 weeks) to establish the in vitro and in vivo model of Dox-induced cardiotoxicity. Administration of BELNV significantly alleviated chronic Dox-induced cardiotoxicity in terms of echocardiographic and histological results. A reduced malondialdehyde (MDA), increased ratio of glutathione (GSH) to oxidized glutathione (GSSG) and levels of system xc- and glutathione peroxidase 4 were observed, indicating that DOX-stimulated ferroptosis was reversed by BELNV. Besides, the safety of BELNV was also validated since no liver, spleen, and kidney toxicity induced by BELNV was observed. These findings provide evidence that BELNV may act as a novel therapeutic biomaterial for patients undergoing adverse effects of Dox, at least partly mediated by inhibiting Dox-induced ferroptosis.


Subject(s)
Beta vulgaris , Exosomes , Ferroptosis , Humans , Mice , Animals , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Myocardium/metabolism , Beta vulgaris/metabolism , Exosomes/metabolism , Mice, Inbred C57BL , Doxorubicin/adverse effects , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Glutathione Disulfide/therapeutic use , Oxidative Stress , Myocytes, Cardiac/metabolism
11.
Psychopharmacology (Berl) ; 241(1): 75-88, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37715015

ABSTRACT

BACKGROUND: In our previous study, we showed simvastatin exerts an antidepressant effect and inhibits neuroinflammation. Given the role of synaptic impairment in depression development, we investigate the effect of simvastatin on synaptic plasticity in depression and the related mechanisms. METHODS: Electrophysiological analysis, Golgi staining, and transmission electron microscope were performed to analyze the effect of simvastatin on synaptic impairment in depression. In addition, the localization and reactivity of N-methyl-D-aspartate receptor (NMDAR) subunits and the downstream signaling were investigated to explore the mechanism of simvastatin's effect on synaptic plasticity. RESULTS: Simvastatin ameliorated the reduction of the magnitude of long-term potentiation (LTP) in Schaffer collateral-CA1, restored hippocampal dendritic spine density loss, improved the number of spine synapses, reversed the reduction in BrdU-positive cells in chronic mild stress (CMS)-induced depressed mice, and ameliorated NMDA-induced neurotoxicity in hippocampal neurons. Dysfunction of NMDAR activity in the hippocampus is associated with depression. Simvastatin treatment reversed the surface expression and phosphorylation changes of NMDAR subunits in NMDA-treated hippocampal neurons and depressed mice. In addition, simvastatin further increased the levels of mature BDNF, activating TrkB-Akt-mTOR signaling, which is critical for synaptic plasticity. CONCLUSIONS: These findings suggest that simvastatin can improve the dysfunction of NMDAR and ameliorate hippocampal synaptic plasticity impairment in depressed mice.


Subject(s)
N-Methylaspartate , Receptors, N-Methyl-D-Aspartate , Mice , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , N-Methylaspartate/metabolism , Simvastatin/pharmacology , Simvastatin/metabolism , Neuronal Plasticity/physiology , Hippocampus , Long-Term Potentiation , Synapses/metabolism , Synaptic Transmission/physiology
12.
Gene ; 897: 148085, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38104950

ABSTRACT

INTRODUCTION: Hereditary antithrombin (AT) deficiency is a rare autosomal dominant disorder with significant clinical heterogeneity. In the study, we identified a patient with AT deficiency caused by compound heterozygous mutations in the SERPINC1 gene. METHODS: A total of 9 individuals from three generations were investigated. The mutations were identified by direct sequencing of SERPINC1. Multiple in silico tools were programmed to predict the conservation of mutations and the effect on the AT structure. The coagulation state was evaluated by the thrombin generation assay. Recombinant AT was overexpressed in HEK293T cells; the mRNA level was determined using RT-qPCR. Western blotting, ELISA, and immunocytofluorescence were applied to characterize the recombinant AT protein. RESULTS: The proband was a 26-year-old male who experienced recurrent venous thrombosis. He presented the type I deficiency with 33 % AT activity and a synchronized decrease in AT antigen. Genetic screening revealed that he carried a heterozygous c.318_319insT (p.Asn107*) in exon 2 and a heterozygous c.922G > T (p.Gly308Cys) in exon 5, both of which were completely conserved in homologous species and resulted in enhanced thrombin generation capability. Hydrophobicity analysis suggested that the p.Gly308Cys mutation may interfere with the hydrophobic state of residues 307-313. In vitro expression studies indicated that the levels of the recombinant protein AT-G308C decreased to 46.98 % ± 2.94 % and 41.35 % ± 1.48 % in transfected cell lysates and media, respectively. After treatment with a proteasome inhibitor (MG132), the quantity of AT-G308C protein in the cytoplasm was replenished to a level comparable to that of the wild type. The mRNA level of AT-N107* was significantly reduced and the recombinant protein AT-N107* was not detected in either the lysate or the culture media. CONCLUSION: These two mutations were responsible for the AT defects and clinical phenotypes of the proband. The p.Gly308Cys mutation could lead to proteasome-dependent degradation of the AT protein in the cytoplasm by altering local residue hydrophobicity. The c.318_319insT could eliminate aberrant transcripts by triggering nonsense-mediated mRNA degradation. Both mutations resulted in type I AT deficiency.


Subject(s)
Antithrombin III Deficiency , Antithrombin III , Thrombophilia , Adult , Humans , Male , Antithrombin III/genetics , Antithrombin III Deficiency/genetics , HEK293 Cells , Mutation , Pedigree , Recombinant Proteins/genetics , RNA, Messenger , Thrombin
13.
Small ; : e2308295, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100287

ABSTRACT

Developing functional medical materials is urgent to treat diabetic wounds with a high risk of bacterial infections, high glucose levels and oxidative stress. Here, a smart copper-based nanocomposite acidic spray has been specifically designed to address this challenge. This copper-based nanocomposite is pH-responsive and has multienzyme-like properties. It enables the spray to effectively eliminate bacteria and alleviate tissue oxidative pressure, thereby accelerating the healing of infected diabetic wounds. The spray works by generating hydroxyl radicals through catalysing H2 O2 , which has a high sterilization efficiency of 97.1%. As alkaline micro-vessel leakage neutralizes the acidic spray, this copper-based nanocomposite modifies its enzyme-like activity to eliminate radicals. This reduces the level of reactive oxygen species in diabetic wounds by 45.3%, leading to a similar wound-healing effect between M1 diabetic mice and non-diabetic ones by day 8. This smart nanocomposite spray provides a responsive and regulated microenvironment for treating infected diabetic wounds. It also offers a convenient and novel approach to address the challenges associated with diabetic wound healing.

14.
Cardiovasc Diabetol ; 22(1): 307, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940931

ABSTRACT

BACKGROUND: This study aimed to explore the association between the triglyceride-glucose (TyG) index and the risk of in-hospital mortality in critically ill patients with sepsis. METHODS: This was a retrospective observational cohort study and data were obtained from the Medical Information Mart for Intensive Care-IV (MIMIC IV2.2) database. The participants were grouped into three groups according to the TyG index tertiles. The primary outcome was in-hospital all-cause mortality. Multivariable logistics proportional regression analysis and restricted cubic spline regression was used to evaluate the association between the TyG index and in-hospital mortality in patients with sepsis. In sensitivity analysis, the feature importance of the TyG index was initially determined using machine learning algorithms and subgroup analysis based on different subgroups was also performed. RESULTS: 1,257 patients (56.88% men) were included in the study. The in-hospital, 28-day and intensive care unit (ICU) mortality were 21.40%, 26.17%, and 15.43% respectively. Multivariate logistics regression analysis showed that the TyG index was independently associated with an elevated risk of in-hospital mortality (OR 1.440 [95% CI 1.106-1.875]; P = 0.00673), 28-day mortality (OR 1.391; [95% CI 1.52-1.678]; P = 0.01414) and ICU mortality (OR 1.597; [95% CI 1.188-2.147]; P = 0.00266). The restricted cubic spline regression model revealed that the risks of in-hospital, 28-day, and ICU mortality increased linearly with increasing TyG index. Sensitivity analysis indicate that the effect size and direction in different subgroups are consistent, the results is stability. Additionally, the machine learning results suggest that TyG index is an important feature for the outcomes of sepsis. CONCLUSION: Our study indicates that a high TyG index is associated with an increased in-hospital mortality in critically ill sepsis patients. Larger prospective studies are required to confirm these findings.


Subject(s)
Critical Illness , Sepsis , Female , Humans , Male , Blood Glucose , Cohort Studies , Glucose , Hospital Mortality , Risk Factors , Sepsis/diagnosis , Triglycerides , Retrospective Studies
15.
BMC Infect Dis ; 23(1): 766, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936083

ABSTRACT

BACKGROUND: In recent years, observational studies have been conducted to investigate the potential impact of vitamins on sepsis. However, many of these studies have produced inconsistent results. Our Mendelian randomization (MR) study aims to evaluate the causality between vitamins and sepsis from a genetic perspective. METHODS: Our MR study was designed following the STROBE-MR guidelines. Genetic instrumental variables for vitamins including folate, vitamin B12, B6, A (Retinol), C, D, and K were obtained from previous genome-wide association studies (GWAS) and MR studies. Five different sepsis severity levels were included in the analysis. The genetic instrumental variables were screened for potential confounders using PhenoScanner V2. MR analysis was performed using MR-egger, inverse-variance weighted multiplicative random effects (IVW-RE), inverse-variance weighted multiplicative fixed-effects (IVW-FE), and wald ratio methods to assess the relationship between vitamins and sepsis. Sensitivity analysis was performed using the MR-egger_intercept method, and the MR-PRESSO package and Cochran's Q test were used to evaluate the heterogeneity of the instrumental variables. RESULTS: Our MR study found no statistically significant association between vitamins and sepsis risk, regardless of the type of vitamin (P-value > 0.05). The odds ratios (ORs) for folate, vitamin B6, vitamin B12, vitamin A, vitamin D, vitamin K, and vitamin C were 1.164 (95% CI: 0.895-1.514), 0.987 (95% CI: 0.969-1.005), 0.975 (95% CI: 0.914-1.041), 0.993 (95% CI: 0.797-1.238), 0.861 (95% CI: 0.522-1.42), 0.955 (95% CI: 0.86-1.059), and 1.049 (95% CI: 0.911-1.208), respectively. Similar results were observed in subgroups of different sepsis severity levels. CONCLUSIONS: Our MR study found no evidence of a causal association between vitamins and sepsis risk from a genetic perspective. Further randomized controlled trials are necessary to confirm these results.


Subject(s)
Sepsis , Vitamins , Humans , Vitamin A , Genome-Wide Association Study , Mendelian Randomization Analysis , Vitamin K , Vitamin B 12 , Folic Acid , Sepsis/genetics
16.
Front Cardiovasc Med ; 10: 1217922, 2023.
Article in English | MEDLINE | ID: mdl-37621565

ABSTRACT

Background: The impact of lipid-lowering medications on sepsis is still not well defined. A Mendelian randomization (MR) study was carried out to probe the causal connections between genetically determined lipids, lipid-reducing drugs, and the risk of sepsis. Materials and methods: Data on total serum cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A-I (ApoA-I), apolipoprotein B (ApoB), and triglycerides (TG) were retrieved from the MR-Base platform and the Global Lipids Genetics Consortium in 2021 (GLGC2021). Our study categorized sepsis into two groups: total sepsis and 28-day mortality of sepsis patients (sepsis28). The inverse-variance weighted (IVW) method was the primary method used in MR analysis. Cochran's Q test and the MR-Egger intercept method were used to assess the heterogeneity and pleiotropy. Results: In the MR analysis, we found that ApoA-I played a suggestively positive role in protecting against both total sepsis (OR, 0.863 per SD increase in ApoA-I; 95% CI, 0.780-0.955; P = 0.004) and sepsis28 (OR, 0.759; 95% CI, 0.598-0.963; P = 0.023). HDL-C levels were also found to suggestively reduce the incidence of total sepsis (OR, 0.891 per SD increase in HDL-C; 95% CI, 0.802-0.990; P = 0.031). Reverse-MR showed that sepsis28 led to a decrease in HDL-C level and an increase in TG level. In drug-target MR, we found that HMGCR inhibitors positively protected against total sepsis (1OR, 0.719 per SD reduction in LDL-C; 95% CI, 0.540-0.958; P = 0.024). LDL-C and HDL-C proxied CETP inhibitors were found to have a protective effect on total sepsis, with only LDL-C proxied CETP inhibitors showing a suggestively protective effect on sepsis28. In Mediated-MR, BMI exhibited a negative indirect effect in HMGCR inhibitors curing sepsis. The indirect impact of ApoA-I explained over 50% of the curative effects of CETP inhibitors in sepsis. Conclusions: Our MR study suggested that ApoA-I and HDL-C protected against sepsis, while HMGCR and CETP inhibitors showed therapeutic potential beyond lipid-lowering effects. ApoA-I explained the effects of CETP inhibitors. Our study illuminates how lipids affect sepsis patients and the effectiveness of new drugs, opening new avenues for sepsis treatment.

17.
ACS Biomater Sci Eng ; 9(7): 4302-4310, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37307138

ABSTRACT

Low efficiency of targeting and delivery toward the thrombus site poses challenges to using thrombolytic drugs. Inspired by the biomimetic system of platelet membranes (PMs) and glucose oxidase (GOx) modification technologies, we develop a novel GOx-powered Janus nanomotor by asymmetrically attaching the GOx to polymeric nanomotors coated with the PMs. Then the PM-coated nanomotors were conjugated with urokinase plasminogen activators (uPAs) on their surfaces. The PM-camouflaged design conferred excellent biocompatibility to the nanomotors and improved their targeting ability to thrombus. The Janus distribution of GOx also allows the uneven decomposition of glucose in biofluids to produce a chemophoretic motion, increasing the drug delivery efficiency of nanomotors. In addition, these nanomotors are located at the lesion site due to the mutual adhesion and aggregation of platelet membranes. Furthermore, thrombolysis effects of nanomotors are enhanced in static and dynamic thrombus as well as in mouse models. It is believed that the novel PM-coated enzyme-powered nanomotors represent a great value for thrombolysis treatment.


Subject(s)
Fibrinolytic Agents , Thrombosis , Animals , Mice , Fibrinolytic Agents/therapeutic use , Glucose Oxidase , Thrombosis/drug therapy , Blood Platelets , Polymers
18.
Adv Sci (Weinh) ; 10(16): e2207347, 2023 06.
Article in English | MEDLINE | ID: mdl-37035946

ABSTRACT

Uncontrolled hemorrhage is still the most common cause of potentially preventable death after trauma in prehospital settings. However, there rarely are hemostatic materials that can achieve safely and efficiently rapid hemostasis simultaneously. Here, new carbonized cellulose-based aerogel hemostatic material is developed for the management of noncompressible torso hemorrhage, the most intractable issue of uncontrolled hemorrhage. The carbonized cellulose aerogel is derived from the Agaricus bisporus after a series of processing, including cutting, carbonization, purification, and freeze-drying. In vitro, the carbonized cellulose aerogels with porous structure show improved hydrophilicity, good blood absorption, and coagulation ability, rapid shape recoverable ability under wet conditions. And in vivo, the carbonized aerogels show effective hemostatic ability in both small and big animal serious hemorrhage models. The amount of blood loss and the hemostatic time of carbonized aerogels are all better than the positive control group. Moreover, the mechanism studies reveal that the good hemostatic ability of the carbonized cellulose aerogel is associated with high hemoglobin binding efficiency, red blood cell absorption, and platelets absorption and activation. Together, the carbonized aerogel developed in this study could be promising for the management of uncontrolled hemorrhage.


Subject(s)
Agaricales , Hemostatics , Animals , Hemorrhage/therapy , Blood Coagulation , Hemostatics/therapeutic use , Hemostatics/chemistry , Hemostatics/pharmacology , Cellulose/therapeutic use
20.
J Inflamm Res ; 16: 1027-1042, 2023.
Article in English | MEDLINE | ID: mdl-36926276

ABSTRACT

Purpose: Sepsis is an aggressive and life-threatening organ dysfunction induced by infection. Excessive inflammation and coagulation contribute to the negative outcomes for sepsis, resulting in high morbidity and mortality. In this study, we explored whether Eupatilin could alleviate lung injury, reduce inflammation and coagulation during sepsis. Methods: We constructed an in vitro sepsis model by stimulating RAW264.7 cells with 1 µg/mL lipopolysaccharide (LPS) for 6 hours. The cells were divided into control group, LPS group, LPS+ Eupatilin (Eup) group, and Eup group to detect their cell activity and inflammatory cytokines and coagulation factor levels. Cells in LPS+Eup and Eup group were pretreated with Eupatilin (10µM) for 2 hours. In vivo, mice were divided into sham operation group, cecal ligation and puncture (CLP) group and Eup group. Mice in the CLP and Eup groups were pretreated with Eupatilin (10mg/kg) for 2 hours by gavage. Lung tissue and plasma were collected and inflammatory cytokines, coagulation factors and signaling were measured. Results: In vitro, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and tissue factor (TF) expression in LPS-stimulated RAW264.7 cells was downregulated by Eupatilin (10µM). Furthermore, Eupatilin inhibited phosphorylation of the JAK2/STAT3 signaling pathway and suppressed p-STAT3 nuclear translocation. In vivo, Eupatilin increased the survival rate of the mice. In septic mice, plasma concentrations of TNF-α, IL-1ß and IL-6, as well as TF, plasminogen activator inhibitor 1 (PAI-1), D-dimer, thrombin-antithrombin complex (TAT) and fibrinogen were improved by Eupatilin. Moreover, Eupatilin alleviated lung injury by improving the expression of inflammatory cytokines and TF, fibrin deposition and macrophage infiltration in lung tissue. Conclusion: Our results revealed that Eupatilin may modulate inflammation and coagulation indicators as well as improve lung injury in sepsis via the JAK2/STAT3 signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...