Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793417

ABSTRACT

The fatigue behavior of a high-strength bearing steel tempered under three different temperatures was investigated with ultrasonic frequency and conventional frequency loading. Three kinds of specimens with various yield strengths exhibited obvious higher fatigue strengths under ultrasonic frequency loading. Then, a 2D crystal plasticity finite element method was adopted to simulate the local stress distribution under different applied loads and loading frequencies. Simulations showed that the maximum residual local stress was much smaller under ultrasonic frequency loading in contrast to that under conventional frequency at the same applied load. It was also revealed that the maximum local stress increases with the applied load under both loading frequencies. The accumulated plastic strain was adopted as a fatigue indicator parameter to characterize the frequency effect, which was several orders smaller than that obtained under conventional loading frequencies when the applied load was fixed. The increment of accumulated plastic strain and the load stress amplitude exhibited a linear relationship in the double logarithmic coordinate system, and an improved fatigue life prediction model was established.

2.
Sci Rep ; 14(1): 6896, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519590

ABSTRACT

As cities have grown, conductor rail power supplies have been widely used in the field of urban rail transit. In order to improve the running performance of trains and reduce the occurrence of accidents, it is necessary to understand the vibration of shoegear-rail system under different initial contact forces and explore the dynamic performance of shoegear-rail system. Therefore, according to the structure of shoegear-rail system, a coupling model of shoegear-rail system is established in this paper. On the basis of the model, the numerical simulation of the shoegear-rail system under different initial contact forces is carried out, and finally the vibration data of the shoegear-rail system under different initial contact forces are obtained. The results show that with the increase of initial contact force in the range of 70-160 N, the vibration amplitude of the electric shoegear and the fluctuation amplitude of the contact force increase, but the maximum absolute shear force value of the conductor rail decreases. It indicates that the lower initial contact force, the better the performance of shoegear-rail system.

3.
Heliyon ; 10(1): e24145, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38268595

ABSTRACT

Dropper failure seriously threatens the operation safety of a high-speed railway. In this work, for a simple chain suspension catenary, one span with five droppers is performed to establish a model and thus the effects of the moving load speed on dropper stress are investigated. First, the partial differential vibration equation of dropper is obtained through the mechanical analysis and converted into the finite difference equation. Then, we consider contact line as a beam element to obtain its motion equation. Furthermore, the boundary and initial conditions of five droppers are determined. Finally, the stresses of five droppers are numerically calculated and the effects of the moving load speed on dropper stress are investigated by writing a MATLAB code. The results suggest that the dropper location significantly affects its stress. Compared with other droppers, droppers II and IV have much more severe vibration amplitudes. Different moving load speeds could cause different stress change of each dropper. With the increasing speed, dropper experiences longer bending compression stage and the bending amplitude increases. The impact of the moving load speed on dropper stress is significant.

SELECTION OF CITATIONS
SEARCH DETAIL