Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 137(3): 165-172, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38212152

ABSTRACT

6,7-Bis-(2-methoxyethoxy)-4(3H)-quinazolinone (BMEQ) was selected from quinazolinones for its strong tyrosinase inhibitory activity (IC50 = 160 ± 6 µM). It suppressed tyrosinase activity in a competitive way and quenched the fluorescence of the enzyme through a static mechanism. The binding of BMEQ to tyrosinase increased the hydrophobicity of the latter and facilitated non-radiative energy transfer between them. The formation of BMEQ-tyrosinase complex was driven by hydrogen bonds and hydrophobic interactions, and it loosened the basic framework structure of tyrosinase, affecting the conformation of the enzyme, and leading to a decrease in tyrosinase activity. In addition, the BMEQ postponed the oxidation of phenolics and flavonoids by inhibiting polyphenol oxidase (PPO) and peroxidase (POD), which resulted in the inhibition of the browning of fresh-cut apples. This study identified a novel tyrosinase inhibitor BMEQ and verified its potential application for improving the preservation of postharvest fruits.


Subject(s)
Malus , Monophenol Monooxygenase , Quinazolinones/pharmacology , Fruit
2.
Front Microbiol ; 14: 1100747, 2023.
Article in English | MEDLINE | ID: mdl-37032862

ABSTRACT

Spaceflight and microgravity has a significant impact on the immune, central nervous, bone, and muscle support and cardiovascular systems. However, limited studies are available on the adverse effects of long-term microgravity on the intestinal microbiota, metabolism, and its relationships. In this study, a ground-based simulated microgravity (SMG) mouse model was established to evaluate the impact of long-term microgravity on gut microbiota and metabolome. After 8 weeks of SMG, alterations of the intestinal microbiota and metabolites were detected using 16S rRNA sequencing and untargeted metabolomics. Compared to the control, no significant differences in α-diversity were observed at weeks 2, 4 and 8. Nevertheless, there were clear differences in community structures at different time points. The phylum Verrucomicrobia significantly declined from 2 to 8 weeks of SMG, yet the relative abundance of Actinobacteria and Deferribacteres expanded remarkably at weeks 8. SMG decreased the genus of Allobaculum and increased Bacteroides significantly throughout the period of 8 weeks. Besides, Genus Akkermansia, Gracilibacter, Prevotella, Odoribacter, Rothia, Sporosarcina, Gracilibacter, Clostridium, and Mucispirillum were identified as biomarkers for SMG group. Desulfovibrio_c21_c20, Akkermansia_muciniphila, and Ruminococcus_gnavus dropped at week 2, which tend to recover at week 4, except for Akkermansia_muciniphila. Bacteroides_uniformis and Faecalibacterium_prausnitzii declined significantly, while Ruminococcus_flavefaciens and Mucispirillum_schaedleri elevated at week 8. Furthermore, intestinal metabolome analysis showed that 129 were upregulated and 146 metabolites were downregulated in SMG. Long-term SMG most affected steroid hormone biosynthesis, tryptophan, cysteine, methionine, arginine, proline metabolism, and histidine metabolism. Correlated analysis suggested that the potential beneficial taxa Allobaculum, Akkermansia, and Faecalibacterium were negatively associated with tryptophan, histidine, arginine, and proline metabolism, but positively with steroid hormone biosynthesis. Yet Bacteroides, Lachnospiraceae_Clostridium, Rothia, Bilophila, and Coprococcus were positively correlated with arginine, proline, tryptophan, and histidine metabolism, while negatively associated with steroid hormone biosynthesis. These results suggest that Long-term SMG altered the community of intestinal microbiota, and then further disturbed intestinal metabolites and metabolic pathways, which have great potential to help understand and provide clues for revealing the mechanisms of long-term SMG involved diseases.

3.
J Sci Food Agric ; 103(6): 2824-2837, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36641547

ABSTRACT

BACKGROUND: Tyrosinase is the key enzyme involved in enzymatic browning of plant-derived foods. Inhibition of tyrosinase activity contributes to the control of food browning. Due to safety regulations or other issues, most identified tyrosinase inhibitors are not suitable for practical use. Therefore, it is necessary to search for novel tyrosinase inhibitors. In this study, the anti-tyrosinase activity and mechanism of albendazole and 2-(2-aminophenyl)-1H-benzimidazole (2-2-A-1HB) were investigated through ultraviolet-visible absorption spectroscopy, fluorescence spectra, molecular docking, and molecular dynamic (MD) simulation. The anti-browning effect of albendazole on fresh-cut apples was then elucidated. RESULTS: Albendazole and 2-2-A-1HB were both efficient tyrosinase inhibitors with IC50 of 51 ± 1.5 and 128 ± 1.3 µmol L-1 , respectively. Albendazole suppressed tyrosinase non-competitively and formed tyrosinase-albendazole complex statically. Hydrogen bond and hydrophobic interaction were major driving forces in stabilizing the tyrosinase-albendazole complex. While 2-2-A-1HB inhibited the enzyme competitively and quenched its intrinsic fluorescence through a static mechanism, it generated strong binding affinity with tyrosinase through hydrophobic interaction. MD simulations further validated that albendazole/2-2-A-1HB could form stable complexes with tyrosinase and loosened its basic framework structure, leading to a change in secondary structure and conformation. In addition, albendazole could delay the browning of fresh-cut apples by inhibiting the activity of polyphenol oxidase, peroxidase and phenylalanine ammonia-lyase, and reducing the oxidation of phenolic compounds. CONCLUSION: This research might provide a deep view of tyrosinase inhibition by benzimidazole derivatives and a theoretical basis for developing albendazole as a potential fresh-keeping agent. © 2023 Society of Chemical Industry.


Subject(s)
Malus , Monophenol Monooxygenase , Albendazole/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Malus/chemistry , Benzimidazoles/pharmacology , Enzyme Inhibitors/chemistry
4.
Molecules ; 24(3)2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30699999

ABSTRACT

BACKGROUND: Long-term exposure to chronic stress is thought to be a factor closely correlated with the development of metabolic disorders, such as diabetes mellitus and metabolic syndrome. Xiaoyaosan, a Chinese herbal formula, has been described in many previous studies to exert anxiolytic-like or antidepressant effects in chronically stressed rats. However, few studies have observed the effects of Xiaoyaosan on the metabolic disorders induced by chronic stress. OBJECTIVE: We sought to investigate the effective regulation of Xiaoyaosan on 21-day chronic immobility stress (CIS, which is 3 h of restraint immobilization every day)-induced behavioural performance and metabolic responses and to further explore whether the effects of Xiaoyaosan were related to SHIP2 expression in the liver. METHODS: Sixty male Sprague Dawley rats were randomly divided into a control group, a CIS group, a Xiaoyaosan group and a rosiglitazone group. The latter three groups were subjected to 21 days of CIS to generate the stress model. After 21 days of CIS, the effects of Xiaoyaosan on body weight, food intake, and behaviour in the open field test, the sucrose preference test and the forced swimming test were observed following chronic stress. Plasma insulin, cholesterol (CHOL), triglyceride (TG), low-density lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) concentrations and blood glucose were examined, and the protein and mRNA expression levels of SHIP2, p85 and Akt in the liver were measured using RT-qPCR and immunohistochemical staining. RESULTS: Rats exposed to CIS exhibited depression-like behaviours, decreased levels of plasma insulin, CHOL, LDL-C, TG and HDL-C, and increased blood glucose. Increased SHIP2 expression and reduced Akt, p-Akt and p85 expression were also observed in the liver. Xiaoyaosan exerted antidepressant effects and effectively reversed the changes caused by CIS. CONCLUSIONS: These results suggest that Xiaoyaosan attenuates depression-like behaviours and ameliorates stress-induced abnormal levels of insulin, blood glucose, CHOL, LDL-C and HDL-C in the plasma of stressed rats, which may be associated with the regulation of SHIP2 expression to enhance PI3K/Akt signalling activity in the liver.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Liver/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/metabolism , Behavior, Animal , Blood Glucose/drug effects , Insulin/blood , Male , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/genetics
5.
Molecules ; 23(5)2018 May 03.
Article in English | MEDLINE | ID: mdl-29751542

ABSTRACT

Background: The apelin-APJ system has been considered to play a crucial role in HPA axis function, and how the traditional Chinese compound prescription Xiaoyaosan regulates the apelin-APJ system as a supplement to treat depressive disorders. Objective: To investigate the depression-like behaviors and expression of apelin and APJ in hypothalamus of chronic unpredictable mild stress (CUMS) mice and study whether these changes related to the regulation of Xiaoyaosan. Methods: 60 adult C57BL/6J mice were randomly divided into four groups, including control group, CUMS group, Xiaoyaosan treatment group and fluoxetine treatment group. Mice in the control group and CUMS group received 0.5 mL physiological saline once a day by intragastric administration. Mice in two treatment groups received Xiaoyaosan (0.25 g/kg/d) and fluoxetine (2.6 mg/kg/d), respectively. After 21 days of modeling with CUMS, the expression of apelin and APJ in hypothalamus were measured by real-time fluorescence quantitative PCR, western blot and immunohistochemical staining. The physical condition, body weight, food intake and behavior tests such as open field test, sucrose preference test and force swimming test were measured to evaluate depressive-like behaviors. Results: In this study, significant behavioral changes were found in CUMS-induced mice, meanwhile the expressions of apelin and APJ in the hypothalamus were changed after modeling. The body weight, food-intake and depressive-like behaviors in CUMS-induced mice could be improved by Xiaoyaosan treatment which is similar with the efficacy of fluoxetine, while the expressions of apelin and APJ in hypothalamus were modified by Xiaoyaosan. Conclusions: The data suggest that apelin-APJ system changes in the hypothalamus may be a target of depressive disorders, and the beneficial effects of Chinese compound prescription Xiaoyaosan on depressive-like behaviors may be mediated by the apelin-APJ system.


Subject(s)
Antidepressive Agents/pharmacology , Apelin Receptors/metabolism , Apelin/metabolism , Depression/metabolism , Drugs, Chinese Herbal/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Animals , Behavior, Animal/drug effects , Body Weight/drug effects , Depression/drug therapy , Depression/etiology , Depression/psychology , Disease Models, Animal , Eating/drug effects , Mice
6.
Sci Rep ; 7(1): 353, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28336920

ABSTRACT

Although the anxiolytic-like effects of Xiaoyaosan, a Chinese herbal formula, have been described in many previous studies, its underlying mechanism remains undefined. The cytokine tumour necrosis factor-α (TNF-α) and its closely associated janus kinase 2 (JAK2)-signal transducer and activator of transcription (STAT3) signalling pathway regulate the neuro-inflammatory response in the brain, thus participating in the development of anxiety. Our purpose was to investigate whether the anxiolytic-like effects of Xiaoyaosan are related to the TNF-α/JAK2-STAT3 pathway in the hippocampus. We examined the effects of Xiaoyaosan on behaviours exhibited in the elevated plus maze test, open field test and novelty-suppressed feeding test as well as hippocampal neuron damage and changes in the TNF-α/JAK2-STAT3 pathway in a rat model of chronic immobilization stress (CIS)-induced anxiety. Xiaoyaosan exerts anxiolytic-like effects on CIS-induced anxiety, with a significant alleviation of anxiety-like behaviours, an attenuation of hippocampal neuron damage, and a reversal of the activation of the TNF-α/JAK2-STAT3 pathway in the hippocampus that are similar to the effects of the JAK2 antagonist AG490. However, Xiaoyaosan and AG490 failed to effectively regulate apoptosis-related factors, including Bax and Caspase-3. These results suggest that Xiaoyaosan attenuates stress-induced anxiety behaviours by down-regulating the TNF-α/JAK2-STAT3 pathway in the rat hippocampus.


Subject(s)
Anti-Anxiety Agents/administration & dosage , Anxiety/metabolism , Drugs, Chinese Herbal/administration & dosage , Hippocampus/drug effects , Hippocampus/metabolism , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Anxiety/prevention & control , Apoptosis/drug effects , Behavior, Animal/drug effects , Down-Regulation , Male , Neurons/drug effects , Neurons/metabolism , Rats, Sprague-Dawley , Signal Transduction , Tumor Necrosis Factor-alpha/blood
7.
Neural Plast ; 2017: 1230713, 2017.
Article in English | MEDLINE | ID: mdl-29445549

ABSTRACT

Objectives: To explore the relationship between insulin levels and nonpsychotic dementia. Methods: Six electronic databases (PubMed, Cochrane, SCI, CNKI, VIP, and Wanfang) were searched from January 1, 2007, to March 1, 2017. Experimental or observational studies that enrolled people with nonpsychotic dementia or abnormal insulin levels in which insulin levels or MMSE scores (events in nonpsychotic dementia) were the outcome measures. Random-effects models were chosen for this meta-analysis. Sample size, mean, s.d., and events were primarily used to generate effect sizes (with the PRIMA registration number CRD42017069860). Results: 50 articles met the final inclusion criteria. Insulin levels in cerebrospinal fluid were lower (Hedges' g = 1.196, 95% CI = 0.238 to 2.514, and P = 0.014), while the levels in peripheral blood were higher in nonpsychotic dementia patients (Hedges' g = 0.853 and 95% CI = 0.579 to 1.127), and MMSE scores were significantly lower in the high insulin group than in the healthy control group (Hedges' g = 0.334, 95% CI = 0.249 to 0.419, and P = 0.000). Conclusions: Our comprehensive results indicate that blood insulin levels may increase in patients with nonpsychotic dementia.


Subject(s)
Dementia/blood , Dementia/cerebrospinal fluid , Insulin/blood , Insulin/cerebrospinal fluid , Databases, Factual , Dementia/epidemiology , Humans , Observational Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...