Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(12): 8934-8947, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36916876

ABSTRACT

The mechanism of Sn and Nb influence on the fraction of tetragonal ZrO2 in oxide films on Zr alloys and their influence mechanism on corrosion resistance of Zr alloys, despite decades of research, are ambiguous due to the lack of kinetic knowledge of phase evolution of ZrO2 with doping. Using stochastic surface walking and density functional theory calculations, we investigate the influence of Nb and Sn on the stability of tetragonal (t) and monoclinic (m) ZrO2, and t-m phase transition in oxide films. We found that though Nb and Sn result in similar apparent variation trends in the t-phase fraction in oxide films, their influences on t-m phase transition differ significantly, which is the underlying origin of different influences of the t-phase fraction in oxide films on the corrosion resistance of Zr alloys with Sn and Nb alloying. These results clarify an important aspect of the relationship between the microstructure and corrosion resistance of Zr alloys.

2.
Materials (Basel) ; 15(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35161209

ABSTRACT

Ferritic/martensitic (F/M) steels whose matrix is Fe-Cr are important candidate materials for fuel cladding of fast reactors, and they have excellent irradiation-swelling resistance. However, the mechanism of irradiation-swelling of F/M steels is still unclear. We use a first-principles method to reveal the influence of irradiation defects, i.e., Frenkel pair including atomic vacancy and self-interstitial atom, on the change of lattice volume of Fe-13Cr lattice. It is found that vacancy causes lattice contraction, while a self-interstitial atom causes lattice expansion. The overall effect of a Frenkel pair on the change of lattice volume is lattice expansion, leading to swelling of the alloy. Furthermore, the diffusion properties of point defects in Fe-13Cr are investigated. Based on the diffusion barriers of the vacancies and interstitial atoms, we find that the defects in Fe-13Cr drain out to surfaces/grain boundaries more efficiently than those in pure α-Fe do. Therefore, the faster diffusion of defects in Fe-13Cr is one of important factors for good swelling resistance of Fe-13Cr compared to pure α-Fe.

SELECTION OF CITATIONS
SEARCH DETAIL