Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Haematologica ; 108(8): 2029-2043, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36861414

ABSTRACT

RNA-binding proteins (RBP) have emerged as essential regulators that control gene expression and modulate multiple cancer traits. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from transformation of T-cell progenitors that normally undergo discrete steps of differentiation in the thymus. The implications of essential RBP during T-cell neoplastic transformation remain largely unclear. Systematic evaluation of RBP identifies RNA helicase DHX15, which facilitates the disassembly of the spliceosome and release of lariat introns, as a T-ALL dependency factor. Functional analysis using multiple murine T-ALL models demonstrates the essential importance of DHX15 in tumor cell survival and leukemogenesis. Moreover, single-cell transcriptomics reveals that DHX15 depletion in T-cell progenitors hinders burst proliferation during the transition from doublenegative to double-positive cells (CD4-CD8- to CD4+CD8+). Mechanistically, abrogation of DHX15 perturbs RNA splicing and leads to diminished levels of SLC7A6 and SLC38A5 transcripts due to intron retention, thereby suppressing glutamine import and mTORC1 activity. We further propose a DHX15 signature modulator drug ciclopirox and demonstrate that it has prominent anti-T-ALL efficacy. Collectively, our data highlight the functional contribution of DHX15 to leukemogenesis through regulation of established oncogenic pathways. These findings also suggest a promising therapeutic approach, i.e., splicing perturbation by targeting spliceosome disassembly, may achieve considerable anti-tumor efficacy.


Subject(s)
Leukemia , RNA Helicases , Humans , Animals , Mice , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Splicing , Spliceosomes/genetics , Leukemia/metabolism , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism
2.
Blood Sci ; 3(3): 65-70, 2021 Jul.
Article in English | MEDLINE | ID: mdl-35402840

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that frequently occurs in children and adolescents, which results from the transformation of immature T-cell progenitors. Aberrant cell growth and proliferation of T-ALL lymphoblasts are sustained by activation of strong oncogenic drivers. Mounting evidence highlights the critical role of the NOTCH1-MYC highway toward the initiation and progression of T-ALL. MYC has been emphasized as a primary NOTCH1 transcriptional target impinging in leukemia-initiating cell activity particularly responsible for disease onset and relapse. These findings lay a foundation of T-ALL as an ideal disease model for studying MYC-mediated cancer. The biology of MYC deregulation in T-ALL supports innovative strategies for therapeutic targeting of MYC. To summarize the relevant literature and data in recent years, we here provide a comprehensive overview of the functional importance of MYC in T-ALL development, and the molecular mechanisms underlying MYC deregulation in T-ALL. Finally, we illustrate the innovative MYC-targeted approaches that have been evaluated in pre-clinical models and shown significant efficacy. Given the complexity of T-ALL molecular pathogenesis, we propose that a combination of anti-MYC strategies with conventional chemotherapies or other targeted/immunotherapies may provide the most durable response, especially for those patients with relapsed and refractory T-ALL.

SELECTION OF CITATIONS
SEARCH DETAIL
...