Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Diabetes ; 16(5): e13556, 2024 May.
Article in English | MEDLINE | ID: mdl-38664878

ABSTRACT

AIMS: The adverse effects of sedentary behavior on obesity and chronic diseases are well established. However, the prevalence of sedentary behavior has increased, with only a minority of individuals meeting the recommended physical activity guidelines. This study aimed to investigate whether habitual leg shaking, a behavior traditionally considered unfavorable, could serve as an effective strategy to improve energy metabolism. MATERIALS AND METHODS: A randomized crossover study was conducted, involving 15 participants (mean [SD] age, 25.4 [3.6]; mean [SD] body mass index, 22 [3]; 7 women [46.7%]). The study design involved a randomized sequence of sitting and leg shaking conditions, with each condition lasting for 20 min. Energy expenditure, respiratory rate, oxygen saturation, and other relevant variables were measured during each condition. RESULTS: Compared to sitting, leg shaking significantly increased total energy expenditure [1.088 kj/min, 95% confidence interval, 0.69-1.487 kj/min], primarily through elevated carbohydrate oxidation. The average metabolic equivalent during leg shaking exhibited a significant increase from 1.5 to 1.8. Leg shaking also raised respiratory rate, minute ventilation, and blood oxygen saturation levels, while having no obvious impact on heart rate or blood pressure. Electromyography data confirmed predominant activation of lower leg muscles and without increased muscle fatigue. Intriguingly, a significant correlation was observed between the increased energy expenditure and both the frequency of leg shaking and the muscle mass of the legs. CONCLUSIONS: Our study provides evidence that habitual leg shaking can boost overall energy expenditure by approximately 16.3%. This simple and feasible approach offers a convenient way to enhance physical activity levels.


Subject(s)
Cross-Over Studies , Energy Metabolism , Leg , Humans , Female , Adult , Male , Young Adult , Sedentary Behavior , Respiratory Rate , Heart Rate/physiology
2.
Molecules ; 29(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338403

ABSTRACT

This research constructed a novel O3/CaO2/HCO3- system to degrade antibiotic oxytetracycline (OTC) in water. The results indicated that CaO2 and HCO3- addition could promote OTC degradation in an O3 system. There is an optimal dosage of CaO2 (0.05 g/L) and HCO3- (2.25 mmol/L) that promotes OTC degradation. After 30 min of treatment, approximately 91.5% of the OTC molecules were eliminated in the O3/CaO2/HCO3- system. A higher O3 concentration, alkaline condition, and lower OTC concentration were conducive to OTC decomposition. Active substances including ·OH, 1O2, ·O2-, and ·HCO3- play certain roles in OTC degradation. The production of ·OH followed the order: O3/CaO2/HCO3- > O3/CaO2 > O3. Compared to the sole O3 system, TOC and COD were easier to remove in the O3/CaO2/HCO3- system. Based on DFT and LC-MS, active species dominant in the degradation pathways of OTC were proposed. Then, an evaluation of the toxic changes in intermediates during OTC degradation was carried out. The feasibility of O3/CaO2/HCO3- for the treatment of other substances, such as bisphenol A, tetracycline, and actual wastewater, was investigated. Finally, the energy efficiency of the O3/CaO2/HCO3- system was calculated and compared with other mainstream processes of OTC degradation. The O3/CaO2/HCO3- system may be considered as an efficient and economical approach for antibiotic destruction.


Subject(s)
Oxytetracycline , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/pharmacology , Water , Tetracycline
3.
Ecotoxicol Environ Saf ; 272: 116061, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38340598

ABSTRACT

Exposure to environmental endocrine disruptors (EEDs) has become a global health concern, and EEDs are known to be potent inducers of constitutive androstane receptor (CAR). 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP, hereafter abbreviated as TC), a specific ligand for CAR, has been considered as a potential EED. Here, we analyzed the effect of TC exposure to female mice on the histological morphology of their alveoli in the basic unit of lactation. We quantified differences in the milk metabolome of the control and TC-exposed group while assessing the correlations between metabolites and neonatal growth. Mammary histological results showed that TC exposure inhibited alveolar development. Based on the milk metabolomic data, we identified a total of 1505 differential metabolites in both the positive and negative ion mode, which indicated that TC exposure affected milk composition. As expected, the differential metabolites were significantly enriched in the drug metabolism pathway. Further analyses revealed that differential metabolites were significantly enriched in multiple lipid metabolic pathways, such as fatty acid biosynthesis, suggesting that most differential metabolites were concentrated in lipids. Simultaneously, a quantitative analysis showed that TC exposure led to a decrease in the relative abundance of total milk lipids, affecting the proportion of some lipid subclasses. Notably, a portion of lipid metabolites were associated with neonatal growth. Taken together, these findings suggest that TC exposure may affect milk lipidomes, resulting in the inability of mothers to provide adequate nutrients, ultimately affecting the growth and health of their offspring.


Subject(s)
Milk , Pyridines , Receptors, Cytoplasmic and Nuclear , Mice , Female , Animals , Milk/chemistry , Liposomes , Lipids/analysis
4.
JAMA Netw Open ; 6(6): e2317023, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37294572

ABSTRACT

This randomized crossover trial evaluates the cardiopulmonary effects of extended use of the N95 mask during daily life.


Subject(s)
Influenza, Human , Humans , Cross-Over Studies , Masks/adverse effects
5.
J Virol ; 97(3): e0004123, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36916914

ABSTRACT

Baculovirus budded virus (BV) acquires its envelope and viral membrane fusion proteins from the plasma membrane (PM) of the host cell during the budding process. However, this classical BV egress pathway has been questioned because an intracellularly localized membrane fusion protein, SPΔnGP64 (glycoprotein 64 [GP64] lacking the signal peptide [SP] n region), was assembled into the envelope to generate infective BVs in our recent studies. Here, we identify an additional pathway for Bombyx mori nucleopolyhedrovirus (BmNPV) BV assembly and release that differs, in part, from the currently accepted model for the egress pathway of baculovirus. Electron microscopy showed that during infection, BmNPV-infected cells contained many newly formed multivesicular body (MVB)-like compartments that included mature virions at 30 h postinfection (p.i.). Immunoelectron microscopy demonstrated that the MVBs contained CD63, an MVB endosome marker, and GP64, a BmNPV fusion glycoprotein. MVB fusion with the PM and the release of mature virions, together with naked nucleocapsids, were observed at the cell surface. Furthermore, MVB egress mediated the translocation of SPΔnGP64 to the PM, which induced cell-cell fusion until 36 h p.i. This BV egress pathway can be partially inhibited by U18666A incubation and RNA interference targeting MVB biogenesis genes. Our findings indicate that BmNPV BVs are enveloped and released through MVBs via the cellular exosomal pathway, which is a subordinate BV egress pathway that produces virions with relatively inferior infectivity. This scenario has significant implications for the elucidation of the BmNPV BV envelopment pathway. IMPORTANCE BmNPV is a severe pathogen that infects mainly Bombyx mori, a domesticated insect of economic importance, and accounts for approximately 15% of economic losses in sericulture. BV production plays a key role in systemic BmNPV infection of larvae. Despite the progress made in the functional gene studies of BmNPV, BmNPV BV egress is ill-understood. This study reports a previously unreported MVB envelopment pathway in BmNPV BV egress. To our knowledge, this is the first report of a baculovirus using dual BV egress pathways. This specific BV egress mechanism explains the cause of the non-PM-localized SPΔnGP64-rescued gp64-null bacmid infectivity, elucidating the reason underlying the retention of SP by BmNPV GP64. The data obtained elucidate an alternate molecular mechanism of baculovirus BV egress.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Multivesicular Bodies , Virus Release , Cell Line , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/metabolism , Viral Fusion Proteins/genetics
6.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768963

ABSTRACT

Environmental chemicals, which are known to impact offspring health, have become a public concern. Constitutive activated receptor (CAR) is activated by various environmental chemicals and participates in xenobiotic metabolism. Here, we described the effects of maternal exposure to the CAR-specific ligand 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP, TC) on offspring health outcomes. Maternal TC exposure exhibited a stronger inhibition of body weight in 3-week-old and 8-week-old first-generation (F1) offspring female mice compared to controls. Further, maternal TC exposure obtained a strong increase in hepatic drug-metabolizing enzyme expression in 3-week-old female mice that persisted into 8-week-old adulthood. Interestingly, we observed distorted intestinal morphological features in 8-week-old F1 female mice in the TC-exposed group. Moreover, maternal TC exposure triggered a loss of intestinal barrier integrity by reducing the expression of intestinal tight junction proteins. Accordingly, maternal exposure to TC down-regulated serum triglyceride levels as well as decreased the expression of intestinal lipid uptake and transport marker genes. Mechanistically, maternal TC exposure activated the intestinal inflammatory response and disrupted the antioxidant system in the offspring female mice, thereby impeding the intestinal absorption of nutrients and seriously threatening offspring health. Altogether, these findings highlight that the effects of maternal TC exposure on offspring toxicity could not be ignored.


Subject(s)
Constitutive Androstane Receptor , Receptors, Cytoplasmic and Nuclear , Animals , Female , Humans , Mice , Growth and Development , Liver/metabolism , Maternal Exposure , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism
7.
Ecotoxicol Environ Saf ; 249: 114463, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321682

ABSTRACT

Humans are exposed to different kinds of environmental contaminants or drugs throughout their lifetimes. The widespread presence of these compounds has raised concerns about the consequent adverse effects on lactating women. The constitutive androstane receptor (CAR, Nr1i3) is known as a xenobiotic sensor for environmental pollution or drugs. In this study, the model environmental chemical 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene, TCPOBOP (TC), which is a highly specific agonist of CAR, was used to investigate the effects of exogenous exposure on lactation function and offspring health in mice. The results revealed that TC exposure decreased the proliferation of mammary epithelial cells during pregnancy. This deficiency further compromised lobular-alveolar structures, resulting in alveolar cell apoptosis, as well as premature stoppage of the lactation cycle and aberrant lactation. Furthermore, TC exposure significantly altered the size and number of milk lipid droplets, suggesting that TC exposure inhibits milk lipid synthesis. Additionally, TC exposure interfered with the milk lipid metabolism network, resulting in the inability of TC-exposed mice to efficiently secrete nutrients and feed their offspring. These findings demonstrated that restricted synthesis and secretion of milk lipids would indirectly block mammary gland form and function, which explained the possible reasons for lactation failure and retarded offspring growth.


Subject(s)
Lactation , Milk , Pyridines , Humans , Pregnancy , Female , Animals , Mice , Milk/chemistry , Lipids/analysis , Homeostasis
8.
Front Big Data ; 5: 835949, 2022.
Article in English | MEDLINE | ID: mdl-35419517

ABSTRACT

Internet-of-Things (IoT) systems have become pervasive for smart homes. In recent years, many of these IoT sensing systems are developed to enable in-home long-term monitoring applications, such as personalized services in smart homes, elderly/patient monitoring, etc. However, these systems often require complicated and expensive installation processes, which are some of the main concerns affecting users' adoption of smart home systems. In this work, we focus on floor vibration-based occupant monitoring systems, which enables non-intrusive in-home continuous occupant monitoring, such as patient step tracking and gait analysis. However, to enable these applications, the system would require known locations of vibration sensors placed in the environment. Current practice relies on manually input of location, which makes the installation labor-intensive, time consuming, and expensive. On the other hand, without known location of vibration sensors, the output of the system does not have intuitive physical meaning and is incomprehensive to users, which limits the systems' usability. We present AutoLoc, a scheme to estimate the location of the vibration sensors in a two-dimensional space in the view of a nearby camera, which has spatial physical meaning. AutoLoc utilizes occupants' walking events captured by both vibration sensors and the co-located camera to estimate the vibration sensors' location in the camera view. First, AutoLoc detects and localizes the occupant's footsteps in the vision data. Then, it associates the time and location of the event to the floor vibration data. Next, the extracted vibration data of the given event from multiple vibration sensors are used to estimate the sensors' locations in the camera view coordinates. We conducted real-world experiments and achieved up to 0.07 meters localization accuracy.

9.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166281, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34610472

ABSTRACT

Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. The occurrence and development of CRC are complicated processes. Obesity and dysbacteriosis have been increasingly regarded as the main risk factors for CRC. Understanding the etiology of CRC from multiple perspectives is conducive to screening for some potential drugs or new treatment strategies to limit the serious side effects of conventional treatment and prolong the survival of CRC patients. Melatonin, a natural indoleamine, is mainly produced by the pineal gland, but it is also abundant in other tissues, including the gastrointestinal tract, retina, testes, lymphocytes, and Harder's glands. Melatonin could participate in lipid metabolism by regulating adipogenesis and lipolysis. Additionally, many studies have focused on the potential beneficial effects of melatonin in CRC, such as promotion of apoptosis; inhibition of cell proliferation, migration, and invasion; antioxidant activity; and immune regulation. Meaningfully, gut microbiota is the main determinant of all aspects of health and disease (including obesity and tumorigenesis). The gut microbiota is of great significance for understanding the relationship between obesity and increased risk of CRC. Although the current understanding of how the melatonin-mediated gut microbiota coordinates a variety of physiological and pathological activities is fairly comprehensive, there are still many unknown topics to be explored in the face of a complex nutritional status and a changeable microbiota. This review summarizes the potential links among melatonin, lipid metabolism, gut microbiota, and CRC to promote the development of melatonin as a preventive and therapeutic agent for CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Melatonin/therapeutic use , Apoptosis/drug effects , Carcinogenesis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology
10.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34451919

ABSTRACT

Epidemiological studies have indicated that obesity is an independent risk factor for colitis and that a high-fat diet (HFD) increases the deterioration of colitis-related indicators in mice. Melatonin has multiple anti-inflammatory effects, including inhibiting tumor growth and regulating immune defense. However, the mechanism of its activity in ameliorating obesity-promoted colitis is still unclear. This study explored the possibility that melatonin has beneficial functions in HFD-induced dextran sodium sulfate (DSS)-induced colitis in mice. Here, we revealed that HFD-promoted obesity accelerated DSS-induced colitis, while melatonin intervention improved colitis. Melatonin significantly alleviated inflammation by increasing anti-inflammatory cytokine release and reducing the levels of proinflammatory cytokines in HFD- and DSS-treated mice. Furthermore, melatonin expressed antioxidant activities and reversed intestinal barrier integrity, resulting in improved colitis in DSS-treated obese mice. We also found that melatonin could reduce the ability of inflammatory cells to utilize fatty acids and decrease the growth-promoting effect of lipids by inhibiting autophagy. Taken together, our study indicates that the inhibitory effect of melatonin on autophagy weakens the lipid-mediated prosurvival advantage, which suggests that melatonin-targeted autophagy may provide an opportunity to prevent colitis in obese individuals.

11.
Sensors (Basel) ; 21(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209571

ABSTRACT

It is important to obtain accurate information about kiwifruit vines to monitoring their physiological states and undertake precise orchard operations. However, because vines are small and cling to trellises, and have branches laying on the ground, numerous challenges exist in the acquisition of accurate data for kiwifruit vines. In this paper, a kiwifruit canopy distribution prediction model is proposed on the basis of low-altitude unmanned aerial vehicle (UAV) images and deep learning techniques. First, the location of the kiwifruit plants and vine distribution are extracted from high-precision images collected by UAV. The canopy gradient distribution maps with different noise reduction and distribution effects are generated by modifying the threshold and sampling size using the resampling normalization method. The results showed that the accuracies of the vine segmentation using PSPnet, support vector machine, and random forest classification were 71.2%, 85.8%, and 75.26%, respectively. However, the segmentation image obtained using depth semantic segmentation had a higher signal-to-noise ratio and was closer to the real situation. The average intersection over union of the deep semantic segmentation was more than or equal to 80% in distribution maps, whereas, in traditional machine learning, the average intersection was between 20% and 60%. This indicates the proposed model can quickly extract the vine distribution and plant position, and is thus able to perform dynamic monitoring of orchards to provide real-time operation guidance.


Subject(s)
Deep Learning , Remote Sensing Technology , Altitude , Fruit , Machine Learning
12.
Chemosphere ; 283: 131156, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34153908

ABSTRACT

Sulfamethoxazole (SMX) is a widely distributed emerging contaminant, which will bring serious harm to ecology and human health. Herein, evaluation of ozone (O3) coupled with calcium peroxide (CaO2) for SMX elimination was carried out. The results showed that CaO2 could promote SMX elimination in O3 system. The removal efficiency was improved from 65.6% to 73.9% when the CaO2 dosage was 0.06 g L-1. O3 dosage of 0.55 g h-1 was beneficial to SMX degradation. With decrease of initial SMX concentration, the removal of SMX firstly enhanced and then declined. Compared with alkaline, acidic and neutral conditions were favorable for SMX degradation. ROS including ·OH, ·O2- and 1O2 play critical role for SMX degradation. Synergetic effect could be established between O3 and CaO2, which encouraged formation of ·OH and accelerated SXM decomposition. The total organic carbon (TOC) and chemical oxygen demand (COD) were all declined after O3/CaO2 treatment. According to results of liquid chromatography-mass spectrometry (LC-MS) and references, four major pathways were proposed. The O3/CaO2 technology was also suitable for practical wastewater treatment. QSAR calculation and seed germination experiment showed that toxicity of the treatment solution was alleviated after O3/CaO2 treatment.


Subject(s)
Ozone , Water Pollutants, Chemical , Humans , Oxidation-Reduction , Peroxides , Sulfamethoxazole/toxicity , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
13.
Int J Mol Sci ; 21(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32245084

ABSTRACT

Hyperuricemia is a central risk factor for gout and increases the risk for other chronic diseases, including cardiometabolic disease, kidney disease, and hypertension. Overproduction of urate is one of the main reasons for hyperuricemia, and dietary factors including seafoods, meats, and drinking are contributed to the development of it. However, the lack of a suitable animal model for urate metabolism is one of the main reasons for the delay and limitations of hyperuricemia research. Combining evolutionary biological studies and clinical studies, we conclude that chicken is a preferred animal model for hyperuricemia. Thus, we provided chickens a high-protein diet (HPD) to evaluate the changes in the serum urate levels in chickens. In our study, the HPD increased the serum urate level and maintained it at a long-term high level in chickens. Long-term high serum urate levels induced an abnormal chicken claw morphology and the precipitation of monosodium urate (MSU) in joint synovial fluid. In addition, a long-term HPD also decreased the glomerular filtration rate and induced mild renal injury. Most importantly, allopurinol and probenecid displayed the positive effects in decreasing serum urate and then attenuated hyperuricemia in chicken model. These findings provide a novel model for hyperuricemia and a new opportunity to further investigate the effects of long-term hyperuricemia on other metabolic diseases.


Subject(s)
Diet, High-Protein/adverse effects , Gout/pathology , Hyperuricemia/etiology , Allopurinol/therapeutic use , Animal Structures/abnormalities , Animals , Chickens/blood , Crystallization , Disease Models, Animal , Gout/blood , Hyperuricemia/blood , Hyperuricemia/diagnostic imaging , Hyperuricemia/drug therapy , Kidney/injuries , Liver/metabolism , Probenecid/therapeutic use , Synovial Fluid/metabolism , Uric Acid/blood
14.
Cells ; 9(2)2020 02 20.
Article in English | MEDLINE | ID: mdl-32093272

ABSTRACT

Misalignment between natural light rhythm and modern life activities induces disruption of the circadian rhythm. It is mainly evident that light at night (LAN) interferes with the human endocrine system and contributes to the increasing rates of obesity and lipid metabolic disease. Maintaining hepatointestinal circadian homeostasis is vital for improving lipid homeostasis. Melatonin is a chronobiotic substance that plays a main role in stabilizing bodily rhythm and has shown beneficial effects in protecting against obesity. Based on the dual effect of circadian rhythm regulation and antiobesity, we tested the effect of melatonin in mice under constant light exposure. Exposure to 24-h constant light (LL) increased weight and insulin resistance compared with those of the control group (12-h light-12-h dark cycle, LD), and simultaneous supplementation in the melatonin group (LLM) ameliorated this phenotype. Constant light exposure disturbed the expression pattern of a series of transcripts, including lipid metabolism, circadian regulation and nuclear receptors in the liver. Melatonin also showed beneficial effects in improving lipid metabolism and circadian rhythm homeostasis. Furthermore, the LL group had increased absorption and digestion of lipids in the intestine as evidenced by the elevated influx of lipids in the duodenum and decrease in the efflux of lipids in the jejunum. More interestingly, melatonin ameliorated the gut microbiota dysbiosis and improved lipid efflux from the intestine. Thus, these findings offer a novel clue regarding the obesity-promoting effect attributed to LAN and suggest a possibility for obesity therapy by melatonin in which melatonin could ameliorate rhythm disorder and intestinal dysbiosis.


Subject(s)
Circadian Clocks/drug effects , Circadian Rhythm/drug effects , Homeostasis/drug effects , Light , Lipid Metabolism/drug effects , Melatonin/metabolism , Melatonin/pharmacology , Animals , Cell Line , Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Insulin Resistance/radiation effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Weight Gain/drug effects , Weight Gain/radiation effects
15.
Molecules ; 24(14)2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31336903

ABSTRACT

It has been more than 36 years since peroxisome proliferator-activated receptors (PPARs) were first recognized as enhancers of peroxisome proliferation. Consequently, many studies in different fields have illustrated that PPARs are nuclear receptors that participate in nutrient and energy metabolism and regulate cellular and whole-body energy homeostasis during lipid and carbohydrate metabolism, cell growth, cancer development, and so on. With increasing challenges to human health, PPARs have attracted much attention for their ability to ameliorate metabolic syndromes. In our previous studies, we found that the complex functions of PPARs may be used as future targets in obesity and atherosclerosis treatments. Here, we review three types of PPARs that play overlapping but distinct roles in nutrient and energy metabolism during different metabolic states and in different organs. Furthermore, research has emerged showing that PPARs also play many other roles in inflammation, central nervous system-related diseases, and cancer. Increasingly, drug development has been based on the use of several selective PPARs as modulators to diminish the adverse effects of the PPAR agonists previously used in clinical practice. In conclusion, the complex roles of PPARs in metabolic networks keep these factors in the forefront of research because it is hoped that they will have potential therapeutic effects in future applications.


Subject(s)
Energy Metabolism , Nutrients/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Animals , Humans , Organ Specificity , Peroxisome Proliferator-Activated Receptors/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction
16.
Sensors (Basel) ; 18(11)2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30400608

ABSTRACT

Individual perspiration level indicates a person's physical status as well as their comfort level. Therefore, continuous perspiration level measurement enables people to monitor these conditions for applications including fitness assessment, athlete physical status monitoring, and patient/elderly care. Prior work on perspiration (sweat) sensing required the user either to be static or to wear the adhesive sensor directly on the skin, which limits users' mobility and comfort. In this paper, we present a novel conductive thread-based textile sensor that measures an individual's on-cloth sweat quantity. The sensor consists of three conductive threads. Each conductive thread is surrounded by a braided cotton cover. An additional braided cotton cover is placed outside the three conductive threads, holding them in a position that is stable for measurement. the sensor can be embedded at various locations on a person's clothing. When the person sweats, the cotton braids absorb the sweat and change the conductivity (resistance) between conductive threads. We used a voltage dividing circuit to measure this resistance as the sensor output (DC). We then conducted a sensor calibration to map this measured voltage to the quantity of electrolyte solution (with the same density as sweat) applied to the sensor. We used this sensor to measure individuals' perspiration quantity and infer their perceived perspiration levels. The system is able to limit the average prediction error to 0.4 levels when compared to five pre-defined perceived perspiration levels.


Subject(s)
Electric Conductivity , Monitoring, Physiologic/instrumentation , Sweat/physiology , Textiles , Calibration , Cotton Fiber , Female , Humans , Male , Motion , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...