Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phytother Res ; 38(1): 253-264, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37873559

ABSTRACT

Ulcerative colitis (UC) pathogenesis is largely associated with intestinal epithelial barrier dysfunction. A therapeutic approach to UC involves the repair of damaged intestinal barrier. Our study aimed to investigate whether aryl hydrocarbon receptor (AhR) mediated the intestinal barrier repair effects of quercetin to ameliorate UC. 3% dextran sulfate sodium was used to induce colitic mice, and quercetin (25, 50, and 100 mg/kg) was administered orally for 10 days to assess the therapeutic effects. In vitro, Caco-2 cells were used to explore the effect of quercetin on tight junction protein expression and AhR activation. The results showed that quercetin alleviated colitic mice by restoring tight junctions (TJs) integrity via an AhR-dependent manner (p < 0.05). In vitro, quercetin dose-dependently elevated the expressions of TJs protein ZO-1 and Claudin1, and activated AhR by enhancing the expression of CYP1A1 and facilitating AhR nuclear translocation in Caco-2 cells (p < 0.05). While AhR antagonist CH223191 reversed the therapeutic effects of quercetin (p < 0.05) and blocked quercetin-induced AhR activation and enhancement of TJs protein (p < 0.05). In conclusion, quercetin repaired intestinal barrier dysfunction by activating AhR-mediated enhancement of TJs to alleviate UC. Our research offered new perspectives on how quercetin enhanced intestinal barrier function.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Caco-2 Cells , Quercetin/pharmacology , Quercetin/therapeutic use , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/therapeutic use , Intestines , Colitis/chemically induced , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Intestinal Mucosa , Disease Models, Animal
2.
Antioxidants (Basel) ; 11(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36290773

ABSTRACT

Radiotherapy for head-and-neck cancers frequently causes long-term hypofunction of salivary glands that severely compromises quality of life and is difficult to treat. Here, we studied effects and mechanisms of Sphingosine-1-phosphate (S1P), a versatile signaling sphingolipid, in preventing irreversible dry mouth caused by radiotherapy. Mouse submandibular glands (SMGs) were irradiated with or without intra-SMG S1P pretreatment. The saliva flow rate was measured following pilocarpine stimulation. The expression of genes related to S1P signaling and radiation damage was examined by flow cytometry, immunohistochemistry, quantitative RT-PCR, Western blotting, and/or single-cell RNA-sequencing. S1P pretreatment ameliorated irradiation-induced salivary dysfunction in mice through a decrease in irradiation-induced oxidative stress and consequent apoptosis and cellular senescence, which is related to the enhancement of Nrf2-regulated anti-oxidative response. In mouse SMGs, endothelial cells and resident macrophages are the major cells capable of producing S1P and expressing the pro-regenerative S1P receptor S1pr1. Both mouse SMGs and human endothelial cells are protected from irradiation damage by S1P pretreatment, likely through the S1pr1/Akt/eNOS axis. Moreover, intra-SMG-injected S1P did not affect the growth and radiosensitivity of head-and-neck cancer in a mouse model. These data indicate that S1P signaling pathway is a promising target for alleviating irradiation-induced salivary gland hypofunction.

3.
Phytomedicine ; 107: 154454, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36155218

ABSTRACT

BACKGROUND: Colorectal cancer is associated with ulcerative colitis (UC). The infiltration of neutrophils is the main cause of DNA damage produced by inflammation in the intestinal epithelium. Under the action of peptidyl arginine deaminase 4 (PAD4), neutrophils dissociate chromatin and form neutrophil extracellular traps (NETs), which can aggravate tissue inflammation and encourage tumor development. Although Huang Qin Decoction (HQD) was found to be useful in treating UC and was used to gradually prevent and treat digestive tract cancers, the underlying reasons were unclear. METHODS: To demonstrate HQD could inhibits the initiation of colitis associated carcinogenesis by controlling NETs related inflammation, we first performed an AOM/DSS-generated colitis-associated carcinogenesis model to assess the efficacy of HQD in reducing neutrophil infiltration and anti-tumor activity. Then, using network pharmacology research, we investigated the potential mechanisms underlying those medicinal effects, as demonstrated by the detection of NETs aggregation and PAD4 expression changes in the colon. RESULTS: HQD substantially reduced the number of colon cancers and the expression of Ki67, restored the level of intestinal tight junction protein occludin and ZO-1, and relieved the intestinal inflammation caused by TNF-α, IL-1ß. At the same time, it inhibited neutrophil infiltration in the colon and improved the immunosurveillance of CD8+T cells. The potential mechanisms of HQD intervention against UC and UC with neoplasia (UCN) were studied using network pharmacology, and 156 conjunct genes as well as numerous inflammation-related pathways were identified. Protein-protein interaction (PPI) analysis indicated that HQD inhibition of intestinal tumors might be related to the deactivation of PAD4, which was verified by the down-regulation of NETs, MPO-DNA complex levels, and PAD4 expression after HQD treatment. CONCLUSION: Huang Qin Decoction inhibits the initiation of colitis associated carcinogenesis by controlling PAD4-dependent neutrophil extracellular traps.


Subject(s)
Colitis, Ulcerative , Colitis , Extracellular Traps , Animals , Arginine/metabolism , Carcinogenesis , Chromatin/metabolism , Colitis/chemically induced , Colitis/complications , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Disease Models, Animal , Extracellular Traps/metabolism , Humans , Inflammation/metabolism , Ki-67 Antigen/metabolism , Mice , Mice, Inbred C57BL , Occludin/metabolism , Scutellaria baicalensis , Tumor Necrosis Factor-alpha/metabolism
4.
Palliat Med Rep ; 3(1): 154-161, 2022.
Article in English | MEDLINE | ID: mdl-36059905

ABSTRACT

Background: The aim of our study was to translate and validate the mainland Chinese version of the short health scale (SHS), a disease-specific quality-of-life (QoL) scale for patients with inflammatory bowel disease (IBD). Methods: The SHS was translated and validated according to the standard process: a translation and back-translation procedure and a reliability and validation study. Patients with IBD were enrolled, and their QoL was assessed using the SHS, the short inflammatory bowel disease questionnaire (SIBDQ), and the Bristol stool form scale. Reliability (internal consistency reliability, split-half reliability, and test-retest reliability) and validity analyses were performed to evaluate the psychometric characteristics of the SHS. The impacts of different severity of major symptoms on QoL were analyzed by comparing the scores of SHS. Results: A total of 112 patients with IBD (69 with ulcerative colitis and 43 with Crohn's disease) completed the mainland Chinese version of the SHS, and 34 patients completed the SHS a second time within one to two weeks. Cronbach's alpha value of the SHS was 0.90, and its split-half coefficient was 0.83. Intraclass correlation coefficients of the four items ranged from 0.52 to 0.72. All four items of the SHS were significantly associated with the corresponding domains of the SIBDQ, with correlation coefficients ranging from -0.52 to -0.69 (p < 0.001). The results of confirmatory factor analysis indicated a good fit of the one-factor model, with comparative fit index (CFI) = 0.878, normed fit index (NFI) = 0.874, incremental fit index (IFI) = 0.880, and goodness of fit index (GFI) = 0.842. The patients with severe symptoms had higher scores in the SHS than those with no or mild symptoms. Conclusions: The SHS was simple and quick to be used. The SHS had good validity and reliability and was suitable for evaluating the QoL of patients with IBD in mainland China.

5.
J Ethnopharmacol ; 299: 115652, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36038092

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dahuang Mudan decoction (DMD) is a classic prescription for treating intestinal carbuncle from Zhang Zhongjing's "Essentials of the Golden Chamber" in the Han Dynasty. Recent studies also prove that DMD has a therapeutic effect on ulcerative colitis (UC), but its mechanism is still unclear. AIM OF STUDY: In this study, we aim to assess the therapeutic effect of DMD on DSS-induced chronic colitis in mice and deeply expound its underlying regulative mechanism. MATERIALS AND METHODS: The efficacy of DMD on mice with 2% DSS-induced chronic colitis was examined by changes in mouse body weight, DAI score, colon length changes, peripheral blood white blood cells (WBC) and red blood cells (RBC) counts, and hemoglobin (HGB) content, using mesalazine as a positive control. A small animal imaging system observed the FITC-Dextran fluorescence distribution in mice, and the contents of IL-22 and IL-17A in colon tissue homogenate supernatant and LPS in peripheral blood were detected by ELISA. Fluorescence in situ molecular hybridization and bacterial culture were used to investigate bacterial infiltration in intestinal mucosa and bacterial translocation in mesenteric lymph nodes and spleen. Mice immune function was further evaluated by analyzing the changes in spleen index, thymus index, and the ratio of peripheral blood granulocytes, monocytes, and lymphocytes. Meanwhile, the proportion of NCR+ group 3 innate lymphoid cells (ILC3), NCR-ILC3, and IL-22+ILC3 in colonic lamina propria lymphocytes of mice was detected by flow cytometry. The contents of effectors IL-22, IL-17A, and GM-CSF were detected by RT-PCR. We use cell scratching to determine the effect of DMD conditioned medium on the migration of Caco-2 cells by establishing an in vitro model of MNK-3 conditioned medium (CM) intervening Caco-2 cells. RT-PCR and WB detect the expression of tight junction ZO-1, Occludin, and Claudin-1. RESULTS: DMD restored the body weight, colon length, peripheral blood RBC numbers, and HGB content of chronic colitis mice and reduced peripheral blood WBC and colon inflammatory cell infiltration. Moreover, DMD decreased LPS content in serum, bacterial infiltration of colonic mucosa, and bacterial translocation in spleen and mesenteric lymph nodes. Simultaneously, DMD intensified the expression of ZO-1, Occludin, and Claudin-1, the ratio of NCR+ILC3 and IL-22+ILC3, and decreased the proportion of NCR-ILC3. In vitro studies also confirmed that the conditioned medium of DMD promoted the migration of Caco-2 cells and the expression of tight junction proteins. CONCLUSION: Our results confirm that DMD improves inflammation and restores intestinal epithelial function in mice with chronic colitis, and the mechanism may be related to regulating ILC3 function.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Body Weight , Caco-2 Cells , Claudin-1/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Culture Media, Conditioned/adverse effects , Culture Media, Conditioned/metabolism , Dextran Sulfate , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Immunity, Innate , Interleukin-17/metabolism , Intestinal Mucosa/metabolism , Lipopolysaccharides/pharmacology , Lymphocytes/metabolism , Mesalamine/adverse effects , Mice , Mice, Inbred C57BL , Occludin/metabolism , Tight Junction Proteins/metabolism
6.
Br J Cancer ; 127(1): 43-55, 2022 07.
Article in English | MEDLINE | ID: mdl-35277659

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most common primary bone malignancy. Chemotherapy plays an essential role in OS treatment, potentially doubling 5-year event-free survival if tumour necrosis can be stimulated. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) enhances OS survival in part through upregulation of aldehyde-dehydrogenase-1A1 which neutralises reactive oxygen species originating from nutritional stress and chemotherapeutic challenge. METHODS: A vivo morpholino (DkkMo) was employed to block the expression of Dkk-1 in OS cells. Cell mitosis, gene expression and bone destruction were measured in vitro and in vivo in the presence and absence of doxorubicin (DRB). RESULTS: DkkMo reduced the expression of Dkk-1 and Aldh1a1, reduced expansion of OS tumours, preserved bone volume and architecture and stimulated tumour necrosis. This was observed in the presence or absence of DRB. CONCLUSION: These results indicate that administration of DkkMo with or without chemotherapeutics can substantially improve OS outcome with respect to tumour expansion and osteolytic corruption of bone in experimental OS model.


Subject(s)
Bone Neoplasms , Osteosarcoma , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Humans , Intercellular Signaling Peptides and Proteins/genetics , Morpholinos/genetics , Morpholinos/pharmacology , Necrosis , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism
7.
Stem Cells Transl Med ; 10(12): 1650-1665, 2021 12.
Article in English | MEDLINE | ID: mdl-34505405

ABSTRACT

Human mesenchymal stem cells (hMSCs) are effective in treating disorders resulting from an inflammatory or heightened immune response. The hMSCs derived from induced pluripotent stem cells (ihMSCs) share the characteristics of tissue derived hMSCs but lack challenges associated with limited tissue sources and donor variation. To meet the expected future demand for ihMSCs, there is a need to develop scalable methods for their production at clinical yields while retaining immunomodulatory efficacy. Herein, we describe a platform for the scalable expansion and rapid harvest of ihMSCs with robust immunomodulatory activity using degradable gelatin methacryloyl (GelMA) microcarriers. GelMA microcarriers were rapidly and reproducibly fabricated using a custom microfluidic step emulsification device at relatively low cost. Using vertical wheel bioreactors, 8.8 to 16.3-fold expansion of ihMSCs was achieved over 8 days. Complete recovery by 5-minute digestion of the microcarriers with standard cell dissociation reagents resulted in >95% viability. The ihMSCs matched or exceeded immunomodulatory potential in vitro when compared with ihMSCs expanded on monolayers. This is the first description of a robust, scalable, and cost-effective method for generation of immunomodulatory ihMSCs, representing a significant contribution to their translational potential.


Subject(s)
Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Bioreactors , Cell Culture Techniques/methods , Cell Differentiation , Cell Proliferation , Gelatin/pharmacology , Humans , Methacrylates
8.
Nat Commun ; 11(1): 3025, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32541821

ABSTRACT

Approximately 10% of fractures will not heal without intervention. Current treatments can be marginally effective, costly, and some have adverse effects. A safe and manufacturable mimic of anabolic bone is the primary goal of bone engineering, but achieving this is challenging. Mesenchymal stem cells (MSCs), are excellent candidates for engineering bone, but lack reproducibility due to donor source and culture methodology. The need for a bioactive attachment substrate also hinders progress. Herein, we describe a highly osteogenic MSC line generated from induced pluripotent stem cells that generates high yields of an osteogenic cell-matrix (ihOCM) in vitro. In mice, the intrinsic osteogenic activity of ihOCM surpasses bone morphogenic protein 2 (BMP2) driving healing of calvarial defects in 4 weeks by a mechanism mediated in part by collagen VI and XII. We propose that ihOCM may represent an effective replacement for autograft and BMP products used commonly in bone tissue engineering.


Subject(s)
Osteogenesis , Pluripotent Stem Cells/cytology , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Proliferation , Cells, Cultured , Collagen Type VI/genetics , Collagen Type VI/metabolism , Collagen Type XII/genetics , Collagen Type XII/metabolism , Craniofacial Abnormalities/physiopathology , Craniofacial Abnormalities/therapy , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/transplantation , Tissue Engineering
9.
Methods Cell Biol ; 156: 15-43, 2020.
Article in English | MEDLINE | ID: mdl-32222217

ABSTRACT

Bone is a composite material consisting primarily of cells, extracellular matrices, accessory proteins and the complex calcium phosphate salt hydroxyapatite. Collectively, the extracellular network of proteins and accessory molecules that provide the organic component of bone tissue is referred to as the osteogenic extracellular matrix (OECM). OECM provides tensile strength and increases the durability of bone, but the OECM also serves as an attachment site and regulatory substrate for cells and a repository for growth factors and cytokines. Increasingly, purified OECM generated by osteogenic cells in culture has attracted interest because it has the capacity to improve the growth and viability of attached cells, enhances the osteogenic program in vitro and in vivo, and shows great promise as a therapeutic tool for orthopedic tissue engineering. This chapter will describe fundamental protocols for the selection and culture of osteogenic cells and conditions for their osteogenic differentiation, and the synthesis, purification and characterization of OECM. Some examples of immobilization to surfaces for the purpose of two- and three-dimensional culture will also be described.


Subject(s)
Extracellular Matrix/metabolism , Osteogenesis , Tissue Engineering/methods , Alkaline Phosphatase/metabolism , Animals , Biomarkers/metabolism , Calcification, Physiologic , Cell Adhesion , Cells, Cultured , Extracellular Matrix/ultrastructure , Humans , Mesenchymal Stem Cells/cytology , Swine
10.
Cell Death Dis ; 9(12): 1161, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478297

ABSTRACT

Malignant bone disease (MBD) occurs when tumors establish in bone, causing catastrophic tissue damage as a result of accelerated bone destruction and inhibition of repair. The resultant so-called osteolytic lesions (OL) take the form of tumor-filled cavities in bone that cause pain, fractures, and associated morbidity. Furthermore, the OL microenvironment can support survival of tumor cells and resistance to chemotherapy. Therefore, a deeper understanding of OL formation and MBD progression is imperative for the development of future therapeutic strategies. Herein, we describe a novel in vitro platform to study bone-tumor interactions based on three-dimensional co-culture of osteogenically enhanced human mesenchymal stem cells (OEhMSCs) in a rotating wall vessel bioreactor (RWV) while attached to micro-carrier beads coated with extracellular matrix (ECM) composed of factors found in anabolic bone tissue. Osteoinhibition was recapitulated in this model by co-culturing the OEhMSCs with a bone-tumor cell line (MOSJ-Dkk1) that secretes the canonical Wnt (cWnt) inhibitor Dkk-1, a tumor-borne osteoinhibitory factor widely associated with several forms of MBD, or intact tumor fragments from Dkk-1 positive patient-derived xenografts (PDX). Using the model, we observed that depending on the conditions of growth, tumor cells can biochemically inhibit osteogenesis by disrupting cWnt activity in OEhMSCs, while simultaneously co-engrafting with OEhMSCs, displacing them from the niche, perturbing their activity, and promoting cell death. In the absence of detectable co-engraftment with OEhMSCs, Dkk-1 positive PDX fragments had the capacity to enhance OEhMSC proliferation while inhibiting their osteogenic differentiation. The model described has the capacity to provide new and quantifiable insights into the multiple pathological mechanisms of MBD that are not readily measured using monolayer culture or animal models.


Subject(s)
Bone Diseases/genetics , Bone Neoplasms/genetics , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Animals , Bioreactors , Bone Diseases/pathology , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Cell Culture Techniques , Cell Differentiation/genetics , Cell Proliferation/genetics , Coculture Techniques , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mesenchymal Stem Cells/pathology , Osteolysis/genetics , Osteolysis/pathology , Tumor Microenvironment/genetics , Wnt Signaling Pathway/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...