Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683847

ABSTRACT

During the combustion of polymeric materials, plenty of heat, smoke, and toxic gases are produced that may cause serious harm to human health. Although the flame retardants such as halogen- and phosphorus-containing compounds can inhibit combustion, they cannot effectively reduce the release of toxic fumes. Zinc hydroxystannate (ZHS, ZnSn(OH)6) is an environmentally friendly flame retardant that has attracted extensive interest because of its high efficiency, safety, and smoke suppression properties. However, using ZHS itself may not contribute to the optimal flame retardant effect, which is commonly combined with other flame retardants to achieve more significant efficiency. Few articles systematically review the recent development of ZHS in the fire safety field. This review aims to deliver an insight towards further direction and advancement of ZHS in flame retardant and smoke suppression for multiple polymer blends. In addition, the fire retarded and smoke suppression mechanism of ZHS will be demonstrated and discussed in depth.

2.
Anaerobe ; 12(3): 148-52, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16765861

ABSTRACT

To develop food-grade bifidobacteria micro-ecologics, screening for Bifidobacteria strains which can adhere to intestinal epithelial cells was finished. Twenty-three bifidobacterial strains tested were isolated from centenarians in Bama country, the fifth long-lived district in the world. Surface hydrophobicity and adherence capability to intestinal epithelial cells in vitro of bifidobacteria were simultaneously investigated for the first time. It has been demonstrated that all the strains exhibited adhesive properties to some extent using intestinal Caco-2 cell line in in vitro model. It could be conclude that the higher hydrophobic strains the stronger adhesive capability. The highest value of hydrophobicity (37.24+/-1.45% and 32.06+/-1.21%) was obtained for strains H-10 and I-6, respectively; correspondingly, the strongest adherence ability (49.47+/-4.88/cell and 47.33+/-2.72/cell) was achieved, respectively. Correlation between surface hydrophobicity and adherence ability of different Bifidobacterium strains including polynomial regression equation (R2=0.78) had been achieved. The present study provided a liable and effective method for screening bifidobacteria with the ability to adhere to intestinal epithelial cells.


Subject(s)
Bifidobacterium/chemistry , Bifidobacterium/physiology , Bacterial Adhesion , Caco-2 Cells , Feces/microbiology , Humans , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...