Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Commun Biol ; 6(1): 1282, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114770

ABSTRACT

Metagenomic-based studies have predicted an extraordinary number of potential antibiotic-resistance genes (ARGs). These ARGs are hidden in various environmental bacteria and may become a latent crisis for antibiotic therapy via horizontal gene transfer. In this study, we focus on a resistance gene cph, which encodes a phosphotransferase (Cph) that confers resistance to the antituberculosis drug capreomycin (CMN). Sequence Similarity Network (SSN) analysis classified 353 Cph homologues into five major clusters, where the proteins in cluster I were found in a broad range of actinobacteria. We examine the function and antibiotics targeted by three putative resistance proteins in cluster I via biochemical and protein structural analysis. Our findings reveal that these three proteins in cluster I confer resistance to CMN, highlighting an important aspect of CMN resistance within this gene family. This study contributes towards understanding the sequence-structure-function relationships of the phosphorylation resistance genes that confer resistance to CMN.


Subject(s)
Anti-Bacterial Agents , Capreomycin , Capreomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria/genetics , Genes, Bacterial , Immunity, Innate
2.
ACS Chem Biol ; 17(1): 138-146, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34994196

ABSTRACT

Capreomycin (CMN) is an important second-line antituberculosis antibiotic isolated from Saccharothrix mutabilis subspecies capreolus. The gene cluster for CMN biosynthesis has been identified and sequenced, wherein the cph gene was annotated as a phosphotransferase likely engaging in self-resistance. Previous studies reported that Cph inactivates two CMNs, CMN IA and IIA, by phosphorylation. We, herein, report that (1) Escherichia coli harboring the cph gene becomes resistant to both CMN IIA and IIB, (2) phylogenetic analysis regroups Cph to a new clade in the phosphotransferase protein family, (3) Cph shares a three-dimensional structure akin to the aminoglycoside phosphotransferases with a high binding affinity (KD) to both CMN IIA and IIB at micromolar levels, and (4) Cph utilizes either ATP or GTP as a phosphate group donor transferring its γ-phosphate to the hydroxyl group of CMN IIA. Until now, Cph and Vph (viomycin phosphotransferase) are the only two known enzymes inactivating peptide-based antibiotics through phosphorylation. Our biochemical characterization and structural determination conclude that Cph confers the gene-carrying species resistance to CMN by means of either chemical modification or physical sequestration, a naturally manifested belt and braces strategy. These findings add a new chapter into the self-resistance of bioactive natural products, which is often overlooked while designing new bioactive molecules.


Subject(s)
Actinobacteria/enzymology , Antibiotics, Antitubercular/metabolism , Antibiotics, Antitubercular/pharmacology , Bacterial Proteins/metabolism , Capreomycin/metabolism , Capreomycin/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Actinobacteria/drug effects , Actinobacteria/metabolism , Antibiotics, Antitubercular/chemistry , Bacterial Proteins/genetics , Capreomycin/chemistry , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Models, Molecular , Molecular Structure , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phylogeny , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL