Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 207: 111378, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33022524

ABSTRACT

The widespread application of cadmium-free CuInS2/ZnS QDs has raised great concern regarding their potential toxicity to humans. To date, toxicological data related to CuInS2/ZnS QDs are scarce. Neurons play extraordinary roles in regulating the activities of organs and systems, and serious consequences occur when neurons are damaged. Currently, the potential toxicity of CuInS2/ZnS QDs on neurons has not been fully elucidated. Here, we investigate the neurotoxicity of PEGylated CuInS2/ZnS (CuInS2/ZnS-PEG) QDs on neuron-like PC12 cells. We found that CuInS2/ZnS-PEG QDs were taken up by PC12 cells, but at a concentration range from 0 to 100 µg/mL, they did not affect the survival rate of the PC12 cells. In addition, we found that CuInS2/ZnS-PEG QDs significantly inhibited neurite outgrowth from and the differentiation of PC12 cells in the presence of NGF, while COOH-modified CuInS2/ZnS QDs or free PEG did not have a similar effect. Further studies showed that CuInS2/ZnS-PEG QDs obviously downregulated the expression of low-affinity NGF receptor (p75NTR) and subsequently negatively regulated the downstream MAPK cascade by dephosphorylating ERK1/2 and AKT. Taken together, these results suggest that CuInS2/ZnS-PEG QDs disturb NGF signal transduction from external stimuli to relevant internal signals, thus affecting normal biological processes such as neurite outgrowth and cell differentiation.


Subject(s)
Neuronal Outgrowth/drug effects , Quantum Dots/toxicity , Animals , Cadmium/pharmacology , Down-Regulation/drug effects , Humans , Mitogen-Activated Protein Kinase 3 , Nerve Growth Factor , Nerve Tissue Proteins , PC12 Cells , Rats , Receptors, Nerve Growth Factor , Signal Transduction/drug effects , Sulfides , Toxicity Tests , Zinc Compounds
2.
Front Pharmacol ; 11: 1206, 2020.
Article in English | MEDLINE | ID: mdl-32973494

ABSTRACT

Graphene, known as "black gold", has important applications in various fields. In previous studies, it has been proved that graphene oxide (GO) which is a derivative of graphene has low toxicity. However, the immunotoxicity of GO has not been fully elucidated. In this work, we used DC2.4 cell line to investigate the in vitro immunotoxicity of two types of GO, mono-layer GO (mono-GO) and multi-layer GO (multi- GO). We found that mono-GO had less effect on cell viability than multi-GO, but both mono-GO and multi-GO significantly induced the generation of ROS in DC2.4 cells. Interestingly, mono-GO caused DC2.4 cells to aggregate, thus changed the cell morphology significantly. However, no similar influence occurred for multi-GO. In addition, the results showed that these two GOs obviously enhance the release of TNF-α by DC2.4 cells with and without LPS stimulation. GO did not affect the level of IL-6 released from DC2.4 cells, but multi-GO promoted the release of IL-6 while mono-GO inhibited the production of IL-6 when cells were in response to LPS stimulation. Whole-transcriptome sequencing analysis found some immune-related differentially expressed genes including H2-DMb1, Ncbp3, Oas2, Men1, Fas, Cd320, Cd244, and Tinagl1 which are engaged in the immune system process. These results suggested that both mono-GO and multi-GO are immunotoxic to DC2.4 cells, which provides important basis for subsequent biological and clinical medical applications.

3.
Nanotheranostics ; 4(3): 173-183, 2020.
Article in English | MEDLINE | ID: mdl-32483522

ABSTRACT

Indium phosphide/zinc sulfate (InP/ZnS) quantum dots (QDs) are presumed to be less hazardous than those that contain cadmium. However, the toxicological profile has not been established. The present study investigated the acute toxicity of InP/ZnS QDs with different surface modifications (COOH, NH2, and OH) in mice after pulmonary aerosol inhalation. InP/ZnS QDs were able to pass through the blood-gas barrier and enter the circulation, and subsequently accumulated in major organs. No obvious changes were observed in the body weight or major organ coefficients. Red blood cell counts and platelet-related indicators were in the normal range, but the proportion of white blood cells was altered. The InP/ZnS QDs caused varying degrees of changes in some serum markers, but no histopathological abnormalities related to InP/ZnS QDs treatment was observed in major organs except that hyperemia in alveolar septa was found in lung sections. These results suggested that the effects of respiratory exposure to InP/ZnS QDs on the lungs need to be fully considered in future biomedical application although the overall toxicity of quantum dots is relatively low.


Subject(s)
Lung , Quantum Dots , Administration, Inhalation , Animals , Body Weight/drug effects , Female , Indium/administration & dosage , Indium/pharmacokinetics , Indium/toxicity , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Phosphines/administration & dosage , Phosphines/pharmacokinetics , Phosphines/toxicity , Quantum Dots/administration & dosage , Quantum Dots/analysis , Quantum Dots/metabolism , Quantum Dots/toxicity , Surface Properties , Tissue Distribution , Zinc Sulfate/administration & dosage , Zinc Sulfate/pharmacokinetics , Zinc Sulfate/toxicity
4.
Dalton Trans ; 46(39): 13463-13471, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28951906

ABSTRACT

A highly dispersed CuO catalyst was prepared by the deposition-precipitation method and evaluated for the catalytic epoxidation of styrene with tert-butyl hydroperoxide (TBHP) as the oxidant under solvent acetonitrile conditions. Compared with MgAl hydrotalcite (MgAl-HT)-, MgO-, TiO2-, C-, and MCM-22-supported catalysts, CuO/CoAl-HT exhibited preferable activity and selectivity towards styrene oxide (72% selectivity at 99.5% styrene conversion) due to its high dispersion of CuO and surface area of Cu. The improved dispersion of CuO/CoAl-HT could be ascribed to the nature of HT support, especially the synergistic effect of acidic and basic sites on the surface, which facilitated the formation of highly dispersed CuO species. A structure-performance relationship study indicated that copper(ii) in CuO was the active site for the epoxidation and oxidation of styrene, and that CuII of rich electronic density favored the improvement of selectivity of styrene oxide. Based on these results, a reaction mechanism was proposed. Moreover, the preferred catalytic performance of CuO/CoAl-HT could be maintained in five reused cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...