Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vet Microbiol ; 292: 110036, 2024 May.
Article in English | MEDLINE | ID: mdl-38458048

ABSTRACT

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Subject(s)
Rotavirus Infections , Swine Diseases , Animals , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Cell Membrane , Endoplasmic Reticulum-Associated Degradation , Histocompatibility Antigens Class I/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rotavirus Infections/veterinary , Swine , Swine Diseases/metabolism
2.
PLoS Pathog ; 19(10): e1011702, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37801439

ABSTRACT

Coronaviruses (CoVs) are a family of the largest RNA viruses that typically cause respiratory, enteric, and hepatic diseases in animals and humans, imposing great threats to the public safety and animal health. Porcine deltacoronavirus (PDCoV), a newly emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets all over the world and poses potential risks of cross-species transmission. Here, we use PDCoV as a model of CoVs to illustrate the reciprocal regulation between CoVs infection and host antiviral responses. In this study, downregulation of DNA polymerase delta interacting protein 3 (POLDIP3) was confirmed in PDCoV infected IPEC-J2 cells by isobaric tags for relative and absolute quantification (iTRAQ) and Western blotting analysis. Overexpression of POLDIP3 inhibits PDCoV infection, whereas POLDIP3 knockout (POLDIP3-/-) by CRISPR-Cas9 editing significantly promotes PDCoV infection, indicating POLDIP3 as a novel antiviral regulator against PDCoV infection. Surprisingly, an antagonistic strategy was revealed that PDCoV encoded nonstructural protein 5 (nsp5) was responsible for POLDIP3 reduction via its 3C-like protease cleavage of POLDIP3 at the glutamine acid 176 (Q176), facilitating PDCoV infection due to the loss of antiviral effects of the cleaved fragments. Consistent with the obtained data in IPEC-J2 cell model in vitro, POLDIP3 reduction by cleavage was also corroborated in PDCoV infected-SPF piglets in vivo. Collectively, we unveiled a new antagonistic strategy evolved by PDCoV to counteract antiviral innate immunity by nsp5-mediated POLDIP3 cleavage, eventually ensuring productive virus replication. Importantly, we further demonstrated that nsp5s from PEDV and TGEV harbor the conserved function to cleave porcine POLDIP3 at the Q176 to despair POLDIP3-mediated antiviral effects. In addition, nsp5 from SARS-CoV-2 also cleaves human POLDIP3. Therefore, we speculate that coronaviruses employ similar POLDIP3 cleavage mechanisms mediated by nsp5 to antagonize the host antiviral responses to sustain efficient virus infection.


Subject(s)
Coronavirus Infections , Swine Diseases , Animals , Humans , Swine , Immunity, Innate , Virus Replication , Antiviral Agents , RNA-Binding Proteins
3.
J Virol ; 97(2): e0187122, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36648234

ABSTRACT

Pseudorabies virus (PRV) is a neurotropic virus causing obvious neurological disorders and reproductive failure in pigs. PRV entry into target cells is a complex multistep process initiated by interacting viral envelope glycoproteins with cellular receptors. In the current study, we found that thrombospondin 3 (THBS3) plays an important role in PRV entry into target cells, indicating that THBS3 is a new PRV coreceptor. To confirm this hypothesis, the knockdown of THBS3 in several permissive cells inhibited PRV primary infection, and overexpression of THBS3 in PK15 cells promoted PRV infection. CRISPR-Cas9 knockout markedly reduced PRV infection in PK15 cells. Antibodies against THBS3 blocked PRV infection in naturally permissive target cells. Moreover, soluble THBS3 protein neutralized the infectivity of PRV. Mechanistically, THBS3 interacted with the PRV gD via its N and C termini to facilitate PRV binding in permissive and nonpermissive cells. Also, in the absence of Nectin-1, THBS3 promoted cell-to-cell fusion mediated by virus glycoproteins. While THBS3 alone could not increase virus entry, overexpression of it in the presence of Nectin-1 promoted virus entry into CHO-K1 cells. Our results have identified THBS3 as a critical player in PRV binding and subsequent membrane fusion and entry. IMPORTANCE Herpesvirus entry occurs through a cascade of virus-cell interactions, and multiple surface glycoproteins play a role in virus binding and entry during the virus invasion process. Early studies showed that attachment to cells by PRV, as well as other alphaherpesviruses, is mediated by interactions between the viral glycoprotein gC and cell membrane proteoglycans carrying heparan sulfate chains (HSPGs). However, gD may also be involved in virus binding in an HSPG-independent manner. To date, the respective cellular receptors are still unknown. In this report, we identified a host molecule, THBS3, involved in gD-mediated PRV binding and subsequent membrane fusion and entry, which increases our understanding of the initial events in alpha herpesvirus infections.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Virus Attachment , Virus Internalization , Animals , Cricetinae , CHO Cells , Herpesvirus 1, Suid/metabolism , Herpesvirus 1, Suid/pathogenicity , Nectins/genetics , Nectins/metabolism , Swine , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Gene Knockdown Techniques
4.
Transbound Emerg Dis ; 69(6): 3506-3517, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36150417

ABSTRACT

In recent years, increasing numbers of cases of acute gastroenteritis caused by Group A rotavirus (RVA) G12 strains have been reported in humans from many countries around the world, but G12 RVA detection in animals is currently less reported. Pigs are an important animal reservoir of zoonotic RVs and a mixing vessel for RVs. In 2020, RVA infection cases in piglets increased in China, which attracted more attention. During an epidemiological survey, a new type of porcine G12P[7] strain (CN127) was detected in pig farms across several provinces. Complete genome analyses revealed that strain CN127 possessed a Wa-like backbone with a genotype constellation of G12-P[7]-I1-C1-M1-R1-A8-N1-T1-E1-H1. The A8 genotype is indicative of its porcine rotavirus origin. Sequence identities and phylogenetic analyses showed that the VP2, VP4, NSP1, NSP4 and NSP5 genes were most closely related to those of porcine rotaviruses, but the VP1, VP6, VP7 and NSP2-3 genes were most closely related to those of human rotaviruses. CN127 likely emerged due to genetic reassortment between porcine and human rotavirus. In vivo experiments showed that CN127 infection caused gastrointestinal tract lesions in piglets and histopathological changes in the lung, liver and mesenteric lymph nodes (MLNs). In the small intestine, RVA antigen was detected in the duodenum and jejunum but not in the ileum. In the extra-intestinal tissues, RVA antigen was detected in the lung but not in the MLNs. Viral RNA was detected in the intestinal and extra-intestinal tissues as well as blood. This study reveals that RVA G12P[7] may become an epidemic strain in China and also provides further evidence that cocirculating human and porcine strains could produce new genotype rotaviruses with high virulence in piglets.


Subject(s)
Rotavirus Infections , Rotavirus , Swine Diseases , Humans , Swine , Animals , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Virulence , Phylogeny , Genome, Viral , Genotype
5.
J Virol ; 95(13): e0033621, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33853967

ABSTRACT

To replicate efficiently and evade the antiviral immune response of the host, some viruses degrade host mRNA to induce host gene shutoff via encoding shutoff factors. In this study, we found that feline calicivirus (FCV) infection promotes the degradation of endogenous and exogenous mRNAs and induces host gene shutoff, which results in global inhibition of host protein synthesis. Screening assays revealed that proteinase-polymerase (PP) is a most effective factor in reducing mRNA expression. Moreover, PP from differently virulent strains of FCV could induce mRNA degradation. Further, we found that the key sites of the PP protein required for its proteinase activity are also essential for its shutoff activity but also required for viral replication. The mechanism analysis showed that PP mainly targets Pol II-transcribed RNA in a ribosome-, 5' cap-, and 3' poly(A) tail-independent manner. Moreover, purified glutathione S-transferase (GST)-PP fusion protein exhibits RNase activity in vitro in assays using green fluorescent protein (GFP) RNA transcribed in vitro as a substrate in the absence of other viral or cellular proteins. Finally, PP-induced shutoff requires host Xrn1 to complete further RNA degradation. This study provides a newly discovered strategy in which FCV PP protein induces host gene shutoff by promoting the degradation of host mRNAs. IMPORTANCE Virus infection-induced shutoff is the result of targeted or global manipulation of cellular gene expression and leads to efficient viral replication and immune evasion. FCV is a highly contagious pathogen that persistently infects cats. It is unknown how FCV blocks the host immune response and persistently exists in cats. In this study, we found that FCV infection promotes the degradation of host mRNAs and induces host gene shutoff via a common strategy. Further, PP protein for different FCV strains is a key factor that enhances mRNA degradation. An in vitro assay showed that the GST-PP fusion protein possesses RNase activity in the absence of other viral or cellular proteins. This study demonstrates that FCV induces host gene shutoff by promoting the degradation of host mRNAs, thereby introducing a potential mechanism by which FCV infection inhibits the immune response.


Subject(s)
Calicivirus, Feline/growth & development , Immune Evasion/immunology , Peptide Hydrolases/metabolism , RNA Stability/physiology , RNA, Messenger/metabolism , Ribonucleases/metabolism , Animals , Caliciviridae Infections/pathology , Calicivirus, Feline/genetics , Calicivirus, Feline/metabolism , Cats , Cell Line , HEK293 Cells , Humans , Immune Evasion/genetics , Peptide Hydrolases/genetics , Protein Biosynthesis/physiology , RNA Interference , RNA, Small Interfering/genetics , Ribonucleases/genetics , Virus Replication
6.
PLoS Pathog ; 16(10): e1008944, 2020 10.
Article in English | MEDLINE | ID: mdl-33075108

ABSTRACT

Feline calicivirus (FCV) belongs to the Caliciviridae, which comprises small RNA viruses of both medical and veterinary importance. Once infection has occurred, FCV can persist in the cat population, but the molecular mechanism of how it escapes the innate immune response is still unknown. In this study, we found FCV strain 2280 to be relatively resistant to treatment with IFN-ß. FCV 2280 infection inhibited IFN-induced activation of the ISRE (Interferon-stimulated response element) promoter and transcription of ISGs (Interferon-stimulated genes). The mechanistic analysis showed that the expression of IFNAR1, but not IFNAR2, was markedly reduced in FCV 2280-infected cells by inducing the degradation of IFNAR1 mRNA, which inhibited the phosphorylation of downstream adaptors. Further, overexpression of the FCV 2280 nonstructural protein p30, but not p30 of the attenuated strain F9, downregulated the expression of IFNAR1 mRNA. His-p30 fusion proteins were produced in Escherichia coli and purified, and an in vitro digestion assay was performed. The results showed that 2280 His-p30 could directly degrade IFNAR1 RNA but not IFNAR2 RNA. Moreover, the 5'UTR of IFNAR1 mRNA renders it directly susceptible to cleavage by 2280 p30. Next, we constructed two chimeric viruses: rFCV 2280-F9 p30 and rFCV F9-2280 p30. Compared to infection with the parental virus, rFCV 2280-F9 p30 infection displayed attenuated activities in reducing the level of IFNAR1 and inhibiting the phosphorylation of STAT1 and STAT2, whereas rFCV F9-2280 p30 displayed enhanced activities. Animal experiments showed that the virulence of rFCV 2280-F9 p30 infection was attenuated but that the virulence of rFCV F9-2280 p30 was increased compared to that of the parental viruses. Collectively, these data show that FCV 2280 p30 could directly and selectively degrade IFNAR1 mRNA, thus blocking the type I interferon-induced activation of the JAK-STAT signalling pathway, which may contribute to the pathogenesis of FCV infection.


Subject(s)
Antiviral Agents/pharmacology , Caliciviridae Infections/drug therapy , Calicivirus, Feline/pathogenicity , Immunity, Innate/drug effects , Interferon Type I/metabolism , Animals , Caliciviridae Infections/virology , Calicivirus, Feline/drug effects , Calicivirus, Feline/immunology , Cat Diseases/virology , Cats , Interferon Type I/immunology , Interferon-beta/genetics , Viruses/drug effects , Viruses/genetics
7.
Transbound Emerg Dis ; 66(6): 2605-2610, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31402584

ABSTRACT

Wild and domestic aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). All subtypes of AIVs, including 16 hemagglutinin (HA) and nine neuraminidase (NA), have been isolated from the waterfowls. The H5 viruses in wild birds display distinct biological differences from their highly pathogenic H5 counterparts. Here, we isolated seven H5N3 AIVs including three from wild birds and four from domestic ducks in China from 2015 to 2018. The isolation sites of all the seven viruses were located in the region of the East Asian-Australasian Migratory Flyway. Phylogenetic analysis indicated that the surface genes of these viruses originated from the wild bird H5 HA subtype and the N3 Eurasian lineage. The internal genes of the seven H5N3 isolates are derived from the five gene donors isolated from the wild birds or ducks in Eastern-Asia region. They were also divided into five genotypes according to their surface genes and internal gene combinations. Interestingly, two of the seven H5N3 viruses contributed their partial internal gene segments (PB1, M and NS) to the newly emerged H7N4 reassortants, which have caused first human H7N4 infection in China in 2018. Moreover, we found that the H5N3 virus used in this study react with the anti-serum of the H5 subtype vaccine isolate (Re-11 and Re-12) and reacted well with the Re-12 anti-serum. Our findings suggest that worldwide intensive surveillance and the H5 vaccination (Re-11 and Re-12) in domestic ducks are needed to monitor the emergence of novel H5N3 reassortants in wild birds and domestic ducks and to prevent H5N3 viruses transmission from the apparently healthy wild birds and domestic ducks to chickens.


Subject(s)
Animals, Wild/virology , Ducks/virology , Influenza A virus/genetics , Influenza in Birds/virology , Reassortant Viruses/genetics , Animals , China/epidemiology , Genotype , Influenza in Birds/epidemiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...