Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 271: 125646, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38218058

ABSTRACT

Uric acid (UA) monitoring is the most effective method for diagnosis and treatment of gout, hyperuricemia, hypertension, and other diseases. However, challenges remain regarding detection efficiency and rapid on-site detection. Here, we first synthesized a CdS/Au/TiO2-NTAs Z-scheme heterojunction material using a titanium dioxide nanotube array (TiO2-NTAs) as the substrate and modified with gold nanoparticles (Au) and cadmium sulfide particles (CdS). This material achieves bandgap alignment to generate a large number of electron-hole pairs under illumination. Then, using CdS/Au/TiO2-NTAs as the working electrode and molecularly imprinted polymers (MIP) as the recognition unit, we constructed a portable photoelectrochemical (PEC) sensor for non-invasive instant detection of UA concentration in human saliva, which has unique advantages in the field of high-sensitivity PEC instant detection. The portable MIP-PEC sensor achieves a linear range of 0.01-50 µM and a detection limit as low as 5.07 nM (S/N = 3). At the same time, the portable MIP-PEC sensor exhibits excellent sensitivity, specificity as well as stability, and shows no statistically significant difference compared to traditional high-performance liquid chromatography (HPLC) in practical sample detection. Compared to traditional PEC modes, this work demonstrates a novel and universal method for high-sensitivity instant detection in the field of PEC.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanotubes , Humans , Uric Acid , Gold/chemistry , Saliva , Nanotubes/chemistry , Electrochemical Techniques/methods , Limit of Detection
2.
Food Chem ; 439: 138142, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38081096

ABSTRACT

Spices have long been popular worldwide. Besides serving as aromatic and flavorful food and cooking ingredients, many spices exhibit notable bioactivity. Quality evaluation methods are essential for ensuring the quality and flavor of spices. However, existing methods typically focus on the content of particular components or certain aspects of bioactivity. For a systematic evaluation of spice quality, we herein propose a comprehensive "quality-quantity-activity" approach based on portable near-infrared spectrometer and membership function analysis. Cinnamomum cassia was used as a representative example to illustrate this approach. Near-infrared spectroscopy and chemometric methods were combined to predict the geographical origin, cinnamaldehyde content, ash content, antioxidant activity, and integrated membership function value. All the optimal prediction models displayed good predictive ability (correlation coefficient of prediction > 0.9, residual predictive deviation > 2.1). The proposed approach can provide a valuable reference for the rapid and comprehensive quality evaluation of spices.


Subject(s)
Cinnamomum aromaticum , Cinnamomum aromaticum/chemistry , Spices
3.
Anal Methods ; 15(39): 5166-5180, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37753596

ABSTRACT

Millettia speciosa (M. speciosa) Champ (MSC) is a healthy food type with medicinal and edible homology, which is now considered a clinically significant anti-rheumatoid arthritis medicine. However, there is currently no standardized or generally accepted research strategy by which we can assess M. speciosa. Thus, it is essential to develop novel theories, strategies and evaluation methods for the scientific quality control of M. speciosa. Herein, our use ultra-high-performance liquid chromatography (UPLC)-MS/MS analysis identified 12 common bioactive components absorbed into MSC serum. Next, network pharmacology analysis exhibited that 5 MSC components may be those active components in treating rheumatoid arthritis and may be considered potential quality markers. These 5 components were then quantified using a fast UPLC approach, based on the quality marker of measurability, showing that lenticin can be regarded as the MSC quality marker. The cumulative study findings, based on systematic assessment of chemical composition both in vivo and in vitro, and the potential efficacy of M. speciosa, provide a novel approach for M. speciosa quality control.

4.
Metabolites ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36676934

ABSTRACT

Liver fibrosis is a pathological result of liver injury that usually leads to a pathophysiological wound healing response. The total alkaloids of Corydalis saxicola Bunting (TACS) have been used for hepatoprotective effects on the liver. However, its exact therapeutic mechanisms of liver fibrosis are not yet well understood. To explore the potential anti-fibrosis mechanism of TACS, metabolomics coupled with network pharmacology were applied to reveal the underlying mechanisms. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with multivariate statistical analyses were performed to estimate changes in metabolic profiles. As a result, a total of 23 metabolites in rats with liver fibrosis were altered; of these, 11 had been downregulated and 12 had been upregulated compared with the control group. After TACS treatment, the levels of 13 metabolites were significantly restored compared with the CCl4-treated group, of which 4 metabolites were up-regulated and 9 metabolites were down-regulated. Many of these metabolites are involved in the bile acid metabolism, glutathione metabolism, tryptophan metabolism and purine metabolism. Then, three key targets, including cytochrome P450 family1 subfamily A member 1 (CYP1A1), ornithine decarboxylase 1 (OCD1) and monoamine oxidase Type B (MAOB) were predicted as potential therapeutic targets of TACS against liver fibrosis through network pharmacology analysis. Finally, palmatine, tetrahydropalmatine and dehydrocavidine were screened as potential active compounds responsible for the anti-fibrosis effect of TACS by molecular docking analysis. This study reveals that TACS exerted anti-fibrosis effects by regulating the liver metabolic pathway with multiple components and multiple targets, which is helpful to further clarify the hepatoprotective mechanisms of natural plant extracts.

SELECTION OF CITATIONS
SEARCH DETAIL
...