Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(14): 9999-10009, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35749650

ABSTRACT

Here, we evaluate for the first time the performances of the newly developed laser direct infrared (LDIR) technique and propose an optimization of the initial protocol for marine microplastics (MPs) analysis. Our results show that an 8 µm porosity polycarbonate filter placed on a Kevley slide enables preconcentration and efficient quantification of MPs, as well as polymer and size determination of reference plastic pellets of polypropylene (PP), polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET), with recoveries ranging from 80-100% and negligible blank values for particle sizes ranging from 200 to 500 µm. A spiked experiment using seawater, sediment, mussels, and fish stomach samples showed that the method responded linearly with significant slopes (R2 ranging from 0.93-1.0; p < 0.001, p < 0.01). Overall, 11 polymer types were identified with limited handling and an analysis time of ca. 3 h for most samples and 6 h for complex samples. Application of this technique to Mediterranean marine samples (seawater, sediment, fish stomachs and mussels) indicated MP concentrations and size distribution consistent with the literature. A high predominance of PVC (sediment, fish stomachs) and PE and PP (seawater, mussels) was observed in the analyzed samples.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Fishes , Lasers , Plastics/analysis , Polyethylene/analysis , Polymers , Polypropylenes/analysis , Polyvinyl Chloride , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 830: 154263, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35247406

ABSTRACT

The importance of dust and biomass burning episodes on the atmospheric concentration of water-soluble reactive phosphate (SRP) was determined in the eastern Mediterranean. SRP was measured with a new rapid real-time automated analytical system with a time resolution of a few minutes per sample and with an extremely low detection limit. The average atmospheric concentration of SRP during the sampling campaign was estimated at 0.35 ± 0.25 (median 0.30) nmol P m-3. The maximum concentration of SRP (3.08 nmol P m-3) was recorded during an intense dust episode, and was almost ten times higher than the campaign average, confirming that Saharan dust was an important primary source of bioavailable P to the eastern Mediterranean, especially during the spring period when 60% of the events occurred. Predicted increases in the frequency and intensity of dust storms in the area will enhance the role of the atmosphere as a source of bioavailable P for the Mediterranean marine ecosystem. During the warm period, when Northerly winds prevailed, biomass burning processes contributed significantly to soluble phosphorus delivered from atmospheric sources to the eastern Mediterranean. These inputs during warm periods are especially important for the Eastern Mediterranean, where biological productivity is strongly limited by nutrient availability.


Subject(s)
Air Pollutants , Dust , Air Pollutants/analysis , Biomass , Dust/analysis , Ecosystem , Environmental Monitoring , Phosphates/analysis , Water
3.
Sensors (Basel) ; 22(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35161575

ABSTRACT

We present in this paper a framework for damage detection and localization using neural networks. The data we use to train the network are m×d pixel images consisting of measurements of the relative variations of m natural frequencies of the structure under monitoring over a period of d-days. To measure the relative variations of the natural frequencies, we use the stretching method, which allows us to obtain reliable measurements amidst fluctuations induced by environmental factors such as temperature variations. We show that even by monitoring a single natural frequency over a few days, accurate damage detection can be achieved. The accuracy for damage detection significantly improves when a small number of natural frequencies is monitored instead of a single one. More importantly, monitoring multiple natural frequencies allows for damage localization provided that the network can be trained for both healthy and damaged scenarios. This is feasible under the assumption that damage occurs at a finite number of damage-prone locations. Several results obtained with numerically simulated data illustrate the effectiveness of the proposed approach.


Subject(s)
Neural Networks, Computer
4.
Environ Pollut ; 300: 118988, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35157937

ABSTRACT

Microplastics (MPs; <5 mm) are a macro issue recognised worldwide as a threat to biodiversity and ecosystems. Widely distributed in marine ecosystems, MPs have already been found in the deep-sea environment. However, there is little information on ecological mechanisms driving MP uptake by deep-sea species. For the first time, this study generates data on MP contamination in mesopelagic fishes from the Southwestern Tropical Atlantic (SWTA) to help understand the deep-sea contamination patterns. An alkaline digestion protocol was applied to extract MPs from the digestive tract of four mesopelagic fish species: Argyropelecus sladeni, Sternoptyx diaphana (Sternoptychidae), Diaphus brachycephalus, and Hygophum taaningi (Myctophidae). A total of 213 particles were recovered from 170 specimens, and MPs were found in 67% of the specimens. Fibres were the most common shape found in all species, whereas polyamide, polyethylene, and polyethylene terephthalate were the most frequent polymers. The most contaminated species was A. sladeni (93%), and the least contaminated was S. diaphana (45%). Interestingly, individuals caught in the lower mesopelagic zone (500-1000 m depth) were less contaminated with MPs than those captured in the upper mesopelagic layer (200-500 m). Our results highlight significant contamination levels and reveal the influence of mesopelagic fishes on MPs transport in the deep waters of the SWTA.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring/methods , Fishes , Plastics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
Materials (Basel) ; 14(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375182

ABSTRACT

In the current work, solid-state polymerization (SSP) was studied for the synthesis of poly(butylene terephthalate), PBT-based vitrimers. A two-step process was followed; the first step involved alcoholysis reactions and the incorporation of glycerol in the polymer chains. The second step comprised transesterification reactions in the solid state (SSP) in the presence of zinc(II) catalyst resulting in the formation of a dynamic crosslinked network with glycerol moieties serving as the crosslinkers. The optimum SSP conditions were found to be 3 h at 180 °C under N2 flow (0.5 L/min) to reach high vitrimer insolubility (up to 75%) and melt strength (2.1 times reduction in the melt flow rate) while increasing the crosslinker concentration (from 3.5 to 7 wt.%) improved further the properties. Glass transition temperature (Tg) was almost tripled in vitrimers compared to initial thermoplastic, reaching a maximum of 97 °C, whereas the melting point (Tm) was slightly decreased, due to loss of symmetry perfection under the influence of the crosslinks. Moreover, the effect of the dynamic crosslinked structure on PBT crystallization behavior was investigated in detail by studying the kinetics of non-isothermal crystallization. The calculated effective activation energy using the Kissinger model and the nucleating activity revealed that the higher crosslinker content impeded and slowed down vitrimers melt crystallization, also inducing an alteration in the crystallization mechanism towards sporadic heterogeneous growth.

6.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190356, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32862822

ABSTRACT

Global warming affects primary producers in the Arctic, with potential consequences for the bacterial community composition through the consumption of microalgae-derived dissolved organic matter (DOM). To determine the degree of specificity in the use of an exudate by bacterial taxa, we used simple microalgae-bacteria model systems. We isolated 92 bacterial strains from the sea ice bottom and the water column in spring-summer in the Baffin Bay (Arctic Ocean). The isolates were grouped into 42 species belonging to Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. Forty strains were tested for their capacity to grow on the exudate from two Arctic diatoms. Most of the strains tested (78%) were able to grow on the exudate from the pelagic diatom Chaetoceros neogracilis, and 33% were able to use the exudate from the sea ice diatom Fragilariopsis cylindrus. 17.5% of the strains were not able to grow with any exudate, while 27.5% of the strains were able to use both types of exudates. All strains belonging to Flavobacteriia (n = 10) were able to use the DOM provided by C. neogracilis, and this exudate sustained a growth capacity of up to 100 times higher than diluted Marine Broth medium, of two Pseudomonas sp. strains and one Sulfitobacter strain. The variable bioavailability of exudates to bacterial strains highlights the potential role of microalgae in shaping the bacterial community composition. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Diatoms/metabolism , Seawater/chemistry , Seawater/microbiology , Arctic Regions , Bacteria/classification , Biodegradation, Environmental , Biodiversity , Diatoms/growth & development , Diatoms/isolation & purification , Ecosystem , Global Warming , Ice Cover/chemistry , Ice Cover/microbiology , Microalgae/growth & development , Microalgae/isolation & purification , Microalgae/metabolism , Models, Biological , Oceans and Seas , Organic Chemicals/metabolism , Phylogeny , Phytoplankton/growth & development , Phytoplankton/isolation & purification , Phytoplankton/metabolism
7.
Sensors (Basel) ; 19(16)2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31430897

ABSTRACT

We present in this paper a structural health monitoring study of the Egyptian lighthouse of Rethymnon in Crete, Greece. Using structural vibration data collected on a limited number of sensors during a 3-month period, we illustrate the potential of the stretching method for monitoring variations in the natural frequencies of the structure. The stretching method compares two signals, the current that refers to the actual state of the structure, with the reference one that characterizes the structure at a reference healthy condition. For the structure under study, an 8-day time interval is used for the reference quantity while the current quantity is computed using a time window of 24 h. Our results indicate that frequency shifts of 1% can be detected with high accuracy allowing for early damage assessment. We also provide a simple numerical model that is calibrated to match the natural frequencies estimated using the stretching method. The model is used to produce possible damage scenarios that correspond to 1% shift in the first natural frequencies. Although simple in nature, this model seems to deliver a realistic response of the structure. This is shown by comparing the response at the top of the structure to the actual measurement during a small earthquake. This is a preliminary study indicating the potential of the stretching method for structural health monitoring of historical monuments. The results are very promising. Further analysis is necessary requiring the deployment of the instrumentation (possibly with additional instruments) for a longer period of time.

8.
Anal Chim Acta ; 1067: 137-146, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31047145

ABSTRACT

Carbohydrates are among the most abundant organic molecules in both aquatic and terrestrial ecosystems; however, very few studies have addressed their isotopic signature using compound-specific isotope analysis, which provides additional information on their origin (δ13C) and fate (Δ14C). In this study, semi-preparative liquid chromatography with refractive index detection (HPLC-RI) was employed to produce pure carbohydrate targets for subsequent offline δ13C and Δ14C isotopic analysis. δ13C analysis was performed by elemental analyzer-isotope ratio mass spectrometer (EA-IRMS) whereas Δ14C analysis was performed by an innovative measurement procedure based on the direct combustion of the isolated fractions using an elemental analyzer coupled to the gas source of a mini carbon dating system (AixMICADAS). In general, four successive purifications with Na+, Ca2+, Pb2+, and Ca2+ cation-exchange columns were sufficient to produce pure carbohydrates. These carbohydrates were subsequently identified using mass spectrometry by comparing their mass spectra with those of authentic standards. The applicability of the proposed method was tested on two different environmental samples comprising marine particulate organic matter (POM) and total suspended atmospheric particles (TSP). The obtained results revealed that for the marine POM sample, the δ13C values of the individual carbohydrates ranged from -18.5 to -16.8‰, except for levoglucosan and mannosan, which presented values of -27.2 and -26.2‰, respectively. For the TSP sample, the δ13C values ranged from -26.4 to -25.0‰. The galactose and glucose Δ14C values were 19 and 43‰, respectively, for the POM sample. On the other hand, the levoglucosan radiocarbon value was 33‰ for the TSP sample. These results suggest that these carbohydrates exhibit a modern age in both of these samples. Radiocarbon HPLC collection window blanks, measured after the addition of phthalic acid (14C free blank), ranged from -988 to -986‰ for the abovementioned compounds, indicating a very small background isotopic influence from the whole purification procedure. Overall, the proposed method does not require derivatization steps, produces extremely low blanks, and may be applied to different types of environmental samples.

9.
Pol J Microbiol ; 66(2): 171-180, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28735318

ABSTRACT

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections' (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011-13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs' incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative's BSI.


Subject(s)
Bacteremia/epidemiology , Drug Resistance, Multiple , Gram-Negative Bacterial Infections/epidemiology , Anti-Bacterial Agents , Bacteria , Gram-Negative Bacterial Infections/drug therapy , Greece/epidemiology , Humans , Incidence , Methicillin-Resistant Staphylococcus aureus , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...