Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 150(4): 920-930, 2022 10.
Article in English | MEDLINE | ID: mdl-35738928

ABSTRACT

BACKGROUND: Worldwide, pollen of the weed mugwort (Artemisiavulgaris) is a major cause of severe respiratory allergy, with its major allergen, Art v 1, being the key pathogenic molecule for millions of patients. Humanized mice transgenic for a human T-cell receptor specific for the major Art v 1 T-cell epitope and the corresponding HLA have been made. OBJECTIVE: We sought to characterize IgE epitopes of Art v 1-sensitized patients and humanized mice for molecular immunotherapy of mugwort allergy. METHODS: Four overlapping peptides incorporating surface-exposed amino acids representing the full-length Art v 1 sequence were synthesized and used to search for IgE reactivity to sequential epitopes. For indirect mapping, peptide-specific rabbit antibodies were raised to block IgE against surface-exposed epitopes on folded Art v 1. IgE reactivity and basophil activation studies were performed in clinically defined mugwort-allergic patients. Secondary structure of recombinant (r) Art v 1 and peptides was determined by circular dichroism spectroscopy. RESULTS: Mugwort-allergic patients and humanized mice sensitized by allergen inhalation showed IgE reactivity and/or basophil activation mainly to folded, complete Art v 1 but not to unfolded, sequential peptide epitopes. Blocking of allergic patients' IgE with peptide-specific rabbit antisera identified a hitherto unknown major conformational IgE binding site in the C-terminal Art v 1 domain. CONCLUSIONS: Identification of the new major conformational IgE binding site on Art v 1, which can be blocked with IgG raised against non-IgE reactive Art v 1 peptides, is an important basis for the development of a hypoallergenic peptide vaccine for mugwort allergy.


Subject(s)
Artemisia , Hypersensitivity , Allergens , Amino Acids , Animals , Antigens, Plant , Artemisia/chemistry , Epitopes, T-Lymphocyte , Humans , Immune Sera , Immunoglobulin E , Immunoglobulin G , Mice , Peptides , Plant Proteins , Rabbits
2.
Allergy Asthma Immunol Res ; 13(1): 154-163, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33191683

ABSTRACT

Arginine kinase (AK) was first identified as an allergen in the Indian-meal moth and subsequently shown to occur as allergen in various invertebrates and shellfish. The cDNA coding for AK from the house dust mite (HDM) species Dermatophagoides pteronyssinus, Der p 20, has been isolated, but no recombinant Der p 20 (rDer p 20) allergen has been produced and characterized so far. We report the expression of Der p 20 as recombinant protein in Escherichia coli. rDer p 20 was purified and shown to be a monomeric, folded protein by size exclusion chromatography and circular dichroism spectroscopy, respectively. Using AK-specific antibodies, Der p 20 was found to occur mainly in HDM bodies, but not in fecal particles. Thirty percent of clinically well-characterized HDM allergic patients (n = 98) whose immunoglobulin E (IgE) reactivity profiles had been determined with an extensive panel of purified HDM allergens (Der f 1, 2; Der p 1, 2, 4, 5, 7, 10, 11, 14, 15, 18, 21, 23 and 37) showed IgE reactivity to Der p 20. IgE reactivity to Der p 20 was more frequently associated with lung symptoms. AKs were detected in several invertebrates with specific antibodies and Der p 20 showed IgE cross-reactivity with AK from shrimp (Litopenaeus vannamei). Thus, Der p 20 is a cross-reactive HDM allergen and may serve as a diagnostic marker for HDM-induced lung symptoms such as asthma.

3.
Tissue Eng Part C Methods ; 20(3): 239-51, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23845029

ABSTRACT

Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/ß-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/ß-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/ß-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/ß-TCP 3D scaffold and subsequent in vivo bone formation. A successfully validated transportation protocol extends the applicability of fresh stem cells involving multicentric trials for regenerative medicine.


Subject(s)
Bone Marrow Cells/cytology , Bone Regeneration , Cell Separation/methods , Mesenchymal Stem Cells/cytology , Transportation , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Regeneration/drug effects , Buffers , Calcium Phosphates , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Choristoma/pathology , Durapatite/pharmacology , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred NOD , Osteogenesis/drug effects , Preservation, Biological , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...